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Abstract
We give the mathematical foundations of Fuzzy Set Theory and Fuzzy Logic, we
present some prominent theoretical achievements of Fuzzy Systems Theory, finally
we give a description of ANFIS.
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2 Fuzzy set theory

1 Introduction
Fuzzy Logic is a generalization of classic Logic, embracing the concept of "vagueness"
in its theory and being able to deal with statements that are not tractable within
classic Logic. Fuzzy Logic can classify statements not only as "true" or "false" as in
ordinary Logic, but it’s possible to assign a numeric value representing the "degree of
truth" of the statement. Moreover Fuzzy Logic is not a branch a Probability Theory
and the converse is also true, because Probability Theory deals with "uncertainty".
We provide some examples to illustrate the differences.

My dice roll will be 5.
This expression represents an outcome of a dice roll, it is easily evaluated in Prob-
ability Theory, since we know that this outcome has a probability of 1

6 , because a
dice has 6 faces. It cannot be evaluated by the means of classic Logic, because that
expression is not simply true or false; the same holds for the Fuzzy Logic since it’s
not possible to say if this expression is "partially true". The expression is not vague
since we know exactly the possible outcomes (1, 2, 3, 4, 5, 6) but we don’t know which
is the final outcome until the dice is tossed, so we can’t comment on the "truth" of
the expression.

The temperature outside is more than 250C.
This expression is clearly not vague and there is no uncertainty, meaning that,
assuming that you have a thermometer, you can say if this statement is true or
false. So this expression can be considered both in classic Logic and in Fuzzy Logic,
it doesn’t make sense to evaluate it in Probability Theory.1

The temperature outside is high.
This expression again is meaningless in the context of Probability, and it is not in-
terpretable in the context of classic Logic (the adjective "high" is vague), while in the
context of Fuzzy Logic it’s possible to assign a value to this expression representing
its level of "truth".

2 Fuzzy set theory
In this section, we will provide an overview of the basic notions of fuzzy set theory,
which is a natural extension of classical set theory.
In classical set theory, the fundamental concept is the "set", which is one of the
primitive notions, i.e. it doesn’t have a definition but is most frequently understood
as a collection of objects (elements) having some features distinguishing them from
other objects. In the case of classical sets, any element is either a member or not a
member of the set, that is, a given object x may belong to a set A (be a member of a
set A), or not belong to this set (not be a member of this set). This two possibilities
are denoted by x P A or x R A.
Human perception, logical thinking and reasoning decisions cannot be modeled using
classical set theory, since, in everyday life, people deal with vague concepts that have

1It’s possible to say that there is a 100% or 0% probability that the temperature outside is
more than 250C, depending on the case, that makes the matter trivial in the context of Probability
Theory.
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2 Fuzzy set theory

a rich connotation without an absolute standard of measurement and, as a result,
often reflect personal and subjective judgments.
For example, the property of being exactly 35 years old defines a classical set because
it divides the universe of individuals into two well-defined and mutually exclusive
groups: those who are 35 years old and those who are not.
However, people commonly deal with the concepts of young, old, or middle-aged
which are vague and each person does not have the same understanding of these
concepts. Moreover, being young (equivalently old) does not define a property that
allows a clear and precise distinction among individuals because a person may be
considered neither clearly young nor clearly not young. This means that the property
of being young does not define a classical set because, in the classical set theory, an
element is either entirely in the set or entirely outside of it, there is no ambiguity or
partial membership.
On the contrary, fuzzy set theory accepts partial memberships and, therefore, in a
sense is a method for rigorously modeling the vagueness and subjectivity in human
perception and reasoning, thus breaking away from the deterministic belong-or-
don’t-belong relationship that characterizes classical set theory. To achieve this,
Zadeh proposed the use of membership functions to describe a fuzzy set, that is, an
object x may belong to a fuzzy set A with varying membership degrees in the range
r0, 1s, where 0 and 1 denote, respectively, lack of membership and full membership.

2.1 Fuzzy sets
Definition 2.1 (Fuzzy set). Let µ : U Ñ r0, 1s and let

A “
␣`

x, µpxq
˘

: x P U
(

.

We say that A is a fuzzy set of U and µ is the membership function of A. We call
U the universe set, universe of discourse or, simply, universe.
Remark 2.1. We defined a fuzzy set from a function with domain U and range r0, 1s,
but it’s trivial to get a function of that kind from A, moreover that function is
clearly unique, hence we can talk about a fuzzy set and its membership function
interchangeably. We usually denote the membership function of a fuzzy set A as
µA.
We can easily identify a classical set A Ď U with the fuzzy set

A˚
“
␣`

x, χApxq
˘

: x P U
(

,

where χA is the characteristic function of A and it’s defined as

χApxq “

#

0, x R A

1, x P A
@ x P U .

Essentially we can identify each subset A of U as a fuzzy set of U with membership
function χA.
We can imagine the membership function of a fuzzy set as a way to represent "how
much an element belongs to a set". For instance we can define the set of "high

2



2 Fuzzy set theory

temperatures", as the fuzzy set A of R with membership function

µApxq “

$

’

&

’

%

1, 50 ď x
x
50 , 0 ď x ď 50
0, x ď 0

.

In this example we are considering temperatures over 500C as being high, the tem-
peratures below 0 as not being high and the temperatures in the middle as being
"partially high", for example 250C is 50% high, it belongs to the set of the high tem-
peratures at 50%. Of course the choice of the membership function was arbitrary in
this case, but it can be done using expert knowledge or surveys, for example.
Notation 2.2 (Zadeh’s representation of a membership function). Let µ : U Ñ

r0, 1s, we represent µ using the following notation:

µ “

ż

U

µpuq

u
.

If U “ tununPN, we can use this notation:

µ “

8
ÿ

i“1

µpuiq

ui

.

If U “ tu1, . . . , unu, we can use this notation:

µ “

n
ÿ

i“1

µpuiq

ui

“
µpu1q

u1
` ¨ ¨ ¨ `

µpunq

un

.

If U Ď R, for each µpuiq “ 0, you can omit the term µpuiq

ui
in the sum.

These notations are referred to as Zadeh’s representation, as given in [ZZW23, Def.
3.2].
Notation 2.3 (Vector representation of a fuzzy set). If U “ tu1, . . . , unu is a finite
set and A is a fuzzy set of U with membership function µ, then we can represent A
as follows

A “ rµpu1q ¨ ¨ ¨ µpunqs .

2.2 Fuzzy set operations
In this section, we use the definitions and notations as in [Pro+17].
The fuzzy set operations are defined with respect to the sets’ membership functions.
Definition 2.4 (Inclusion relation of fuzzy sets). Let A and B be two fuzzy sets of
universe U . A is a subset of B, denoted as A Ď B, if

@x P U, µApxq ď µBpxq

Definition 2.5 (Equality relation of fuzzy sets). Let A and B be two fuzzy sets of
universe U . A and B are equal if

@x P U, µApxq “ µBpxq

3



2 Fuzzy set theory

Definition 2.6 (Complement of a fuzzy set). Let A be a fuzzy set of universe U .
The fuzzy set A1 defined as

@x P U, µA1pxq “ 1 ´ µApxq

is called the complement of A.
In order to define union and intersection of two fuzzy sets, we need to define the
t-norm and t-conorm.
Definition 2.7 (Triangular norm). A Triangular norm or t-norm is a mapping
T : r0, 1s ˆ r0, 1s Ñ r0, 1s with the following four properties.

• Commutativity: T px, yq “ T py, xq

• Monotonicity: T px1, y1q ď T px2, y2q , if x1 ď x2 and y1 ď y2
• Associativity: T px, T py, zqq “ T pT px, yq, zq

• Linearity: T px, 1q “ x

Notation 2.8. A triangular norm can also be denoted with the symbol ^, i.e.
T px, yq “ x ^ y are equivalent notations.
Definition 2.9 (Triangular conorm). A Triangular conorm or t-conorm or s-norm
is a mapping C : r0, 1s ˆ r0, 1s Ñ r0, 1s with the following four properties.

• Commutativity: Cpx, yq “ Cpy, xq

• Monotonicity: Cpx1, y1q ď Cpx2, y2q , if x1 ď x2 and y1 ď y2
• Associativity: Cpx, Cpy, zqq “ CpCpx, yq, zq

• Linearity: Cpx, 0q “ x

Notation 2.10. A triangular conorm can also be denoted with the symbol _, i.e.
Cpx, yq “ x _ y are equivalent notations.
There exist various t-norms and t-conorms.
The most common t-norms are:

• standard intersection or minimum t-norm: T px, yq “ minpx, yq

• algebraic product: T px, yq “ xy.
Similarly, the most common t-conorms are

• standard union or maximum t-conorm: Cpx, yq “ maxpx, yq

• algebraic sum or probabilistic sum: Cpx, yq “ x ` y ´ xy.
In general, the union of two fuzzy sets is described by t-conorms, whereas their
intersection is described by t-norms.
Definition 2.11 (Union and intersection of fuzzy sets). Let A and B fuzzy sets of
universe U . The union of A and B is the fuzzy set A Y B:

@x P U, µAYBpxq “ CpµApxq, µBpxqq “ µApxq _ µBpxq

where C : r0, 1s ˆ r0, 1s Ñ r0, 1s is a t-conorm.
Using the standard union or the algebraic sum, we have respectively:

@x P U, µAYBpxq “ maxpµApxq, µBpxqq

called maximal operator of fuzzy sets and

@x P U, µAYBpxq “ µApxq ` µBpxq ´ µApxqµBpxq

4



2 Fuzzy set theory

called sum operator of fuzzy sets.
The intersection of A and B is the fuzzy set A X B:

@x P U, µAXBpxq “ T pµApxq, µBpxqq “ µApxq ^ µBpxq

where T : r0, 1s ˆ r0, 1s Ñ r0, 1s is a t-norm.
Using the standard intersection or algebraic product, we have respectively:

@x P U, µAXBpxq “ minpµApxq, µBpxqq

called minimum operator of fuzzy sets and

@x P U, µAXBpxq “ µApxqµBpxq

called product operator of fuzzy sets.
Remark 2.2. We can see that the fuzzy set operations defined above are extensions
of the classical set operations. Let us consider two crisp sets A and B of a universe
U . In the classical set theory, we give the following definitions:

• the complement of A is the subset Ac consisting of the elements of U that do
not belong to A;

• the union of A and B is the subset A Y B consisting of the elements that
belong to at least one of A or B.

• the intersection of A and B is the subset AXB consisting of the elements that
belong to both A and B

Furthermore, the following relations hold between the characteristic functions:
• χAc “ 1 ´ χA;
• χAYB “ χA ` χB ´ χAχB “ maxpχA, χBq.
• χAXB “ χAχB “ minpχA, χBq

However, as mentioned earlier, every crisp subset of U can be identified with a fuzzy
set of U by defining its membership function as its characteristic function. As a
consequence:

• the fuzzy complement of A is
␣`

x, χAcpxq
˘

: x P U
(

• the fuzzy union of A and B is
␣`

x, χAYBpxq
˘

: x P U
(

• the fuzzy intersection of A and B is
␣`

x, χAXBpxq
˘

: x P U
(

Definition 2.12 (Cartesian Product of fuzzy sets). Let A1, . . . , An be fuzzy sets of
U1, . . . , Un respectively. A fuzzy set F of U1 ˆ ¨ ¨ ¨ ˆ Un of the form

µF px1, . . . , xnq “ µA1px1q ^ ¨ ¨ ¨ ^ µAnpxnq, @ px1, . . . , xnq P U1 ˆ ¨ ¨ ¨ ˆ Un

where ^ in a t-norm, is called cartesian product of A1, . . . , An and is denoted by
F “ A1 ˆ ¨ ¨ ¨ ˆ An.
Definition 2.13 (Inner product of fuzzy sets). Let A and B fuzzy sets of universe
U . The inner product of A and B is

A ˝ B “
ł

xPU

pµApxq ^ µBpxqq.

where ^ and _ are respectively a t-norm and an s-norm.
Remark 2.3. The inner product of A and B is a scalar; specifically, A ˝ B P r0, 1s.
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2 Fuzzy set theory

2.3 Fuzzy relations
Definition 2.14 (Fuzzy relation). Let U and V be two universe sets, i.e. two
non-empty sets. A fuzzy set

R “
␣`

px, yq, µRpx, yq
˘

: px, yq P U ˆ V
(

of the cartesian product U ˆ V is called fuzzy relation on U ˆ V or binary fuzzy
relation from U to V or fuzzy relation for short.
The membership function µR : U ˆ V Ñ r0, 1s associates to each pair px, yq P U ˆ V
the degree of relationship between x and y.
Similar to the binary fuzzy relation, we can define a multidimensional fuzzy relation
as

R “
␣`

px1, . . . , xnq, µRpx1, . . . , xnq
˘

: px1, . . . , xnq P U1 ˆ ¨ ¨ ¨ ˆ Un

(

where µR : U1 ˆ ¨ ¨ ¨ ˆ Un Ñ r0, 1s is a membership function of an n-dimensional
fuzzy set defined in universe U1 ˆ ¨ ¨ ¨ ˆ Un.
Notation 2.15. Suppose U “ tx1, . . . , xnu and V “ ty1, . . . , ymu are finite sets, a
fuzzy relation R can be represented by a matrix

R “

»

—

—

—

–

µRpx1, y1q µRpx1, y2q ¨ ¨ ¨ µRpx1, ymq

µRpx2, y1q µRpx2, y2q ¨ ¨ ¨ µRpx2, ymq
... ... . . . ...

µRpxn, y1q µRpxn, y2q ¨ ¨ ¨ µRpxn, ymq

fi

ffi

ffi

ffi

fl

Definition 2.16 (Fuzzy relation on fuzzy sets). Let A and B be fuzzy sets of U
and V , respectively. A fuzzy relation on A and B is a fuzzy set

R “
␣`

px, yq, µRpx, yq
˘

: px, yq P U ˆ V
(

such that @ px, yq P U ˆ V , µRpx, yq ď minpµApxq, µBpyqq.

2.4 Compositions with binary fuzzy relations
Because fuzzy relations are fuzzy sets, they are subject to the same operations as
fuzzy sets. Additionally, binary fuzzy relations in different product spaces may
be composed. This operation of composition is also called synthetic operation. In
general, we can define this operation as follows.
Definition 2.17 (Synthetic operation). Let U , V and W be 3 universe sets and
let R and S be binary fuzzy relations on U ˆ V and on V ˆ W , respectively. The
composition, synthesis or synthetic operation, of R and S, is the binary relation on
U ˆ W :

T “ R ˝ S .

Meaning
@ px, zq P U ˆ W, µT px, zq “

ł

yPV

µRpx, yq ^ µSpy, zq.
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3 Fuzzy systems

Different versions of the composition have been proposed, depending on the choice of
the operators ^ and _. Frequently used compositions are the so-called supremum-
t-norm composition, i.e

@px, zq P U ˆ W, µT px, zq “ sup
yPV

µRpx, yq ^ µSpy, zq

where ^ : r0, 1s ˆ r0, 1s Ñ r0, 1s denotes a t-norm.
• if ^ is the standard intersection t-norm (i.e. minimum t-norm), the composi-

tion is called max-min composition
• if ^ is the product t-norm , the composition is called max-prod composition.

Remark 2.4. For relations described by relation matrices, the above compositions can
be achieved by multiplication of matrices with multiplication of elements replaced
by t-norm and the adding of elements replaced by s-norm.
Definition 2.18 (Zadeh’s compositional rule). Let R and A be, respectively, a fuzzy
relation on U ˆ V and a fuzzy set of U . The composition

B “ A ˝ R

is called the conclusion made from the fact A based on the rule R .
Remark 2.5. B “ A ˝ R is the synthetic operation and means that

@y P V, µBpyq “
ł

xPU

µApxq ^ µRpx, yq .

3 Fuzzy systems
This section describes the basic concepts of fuzzy systems.
In simple terms, a fuzzy system is a computing framework based on the concepts of
fuzzy set theory, fuzzy conditional rules and fuzzy reasoning [Alo+21].
In the following, we first formally define a fuzzy system, and then we provide an
interpretation of these concepts that will make clear why fuzzy systems can "simulate
human thinking procedure".

3.1 Fuzzy conditional rule and Fuzzy inference
Definition 3.1 (Implication Operator). An implication operator is a function

ϕ : r0, 1s ˆ r0, 1s Ñ r0, 1s

which is a t-norm or has the following properties:
• ϕ is continuous
• @ a, b, c P r0, 1s : a ď c, ϕpa, bq ě ϕpc, bq

• @ a, b, c P r0, 1s : b ď c, ϕpa, bq ď ϕpa, cq

• @ b P r0, 1s, ϕp0, bq “ 1
• @ a P r0, 1s, ϕpa, 1q “ 1
• ϕp1, 0q “ 0

If ϕ is a t-norm we say that ϕ is a conjunctive implication operator ; otherwise, we
speak of logical implication operator.

7



3 Fuzzy systems

Various implication operators have been defined. For example,
• the standard intersection (minimum) t-norm ϕpx, yq “ minpx, yq is the mini-

mum (Mamdani) implication operator
• ϕpx, yq “ maxp1 ´ x, minpx, yqq is the Early Zadeh implication operator or

max-min implication operator
• ϕpx, yq “ minp1, 1 ´ x ` yq is the Lukasiewicz implication operator.

Definition 3.2 (Fuzzy conditional rule). Let A and B be fuzzy sets of U and V ,
respectively. A fuzzy conditional rule (fuzzy implication or fuzzy IF-THEN rule) is
a fuzzy relation R on U ˆ V of the form

µRpx, yq “ ϕpµApxq, µBpyqq

where ϕ is an implication operator. In this case, R is denoted by

A ùñ B

and A is called antecedent (premise), whereas B is called consequent (conclusion).
A MISO (Multiple Inputs Single Output) fuzzy conditional rule with conjunctive
antecedent (or canonical fuzzy if-then rule) is a fuzzy implication of the form

A1 ˆ A2 ˆ ¨ ¨ ¨ ˆ AN ùñ B

where the antecedent A P FpU1 ˆ ¨ ¨ ¨ ˆ Unq is a cartesian product of fuzzy sets
Ai P FpUiq.
Similarly, a MISO fuzzy conditional rule with disjunctive antecedent is a fuzzy im-
plication where the antecedent is a fuzzy set A of a universe U “ U1 ˆ ¨ ¨ ¨ ˆ Un such
that

µApx1, . . . , xnq “ µA1px1q _ ¨ ¨ ¨ _ µAnpxnq

where @i “ 1, . . . , n, Ai is a fuzzy set of universe Ui and _ is a t-conorm.
Remark 3.1. In the context of fuzzy systems, we use only canonical fuzzy if-then
rules. For this reason, for brevity, we will refer to this type simply as fuzzy condi-
tional rule/implication/if-then rule, etc.
Remark 3.2. The values µApxq, µBpyq and µRpx, yq can be interpreted respectively
as a truth degree of the antecedent in x, a truth degree of the consequent in y and a
truth degree of the implication in px, yq. In this sense, a logical implication operator,
thanks to the properties ϕp0, bq “ 1, ϕpa, 1q “ 1, ϕp1, 0q “ 0, generalizes the truth
table of the implication operator in Boolean logic, that is

µA µB µA ùñ B

0 0 1
0 1 1
1 0 0
1 1 1
x y ϕpx, yq

However, this doesn’t hold in general; for example, it doesn’t hold for the minimum
implication operator (minp0, 0q “ 0 ‰ 1). So, in general, a fuzzy implication is not
simply a generalization of classical logic implication.
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3 Fuzzy systems

Definition 3.3 (Powerfuzzyset). Let U be the universe of discourse, we denote the
set of the fuzzy sets of U as FpUq, formally

FpUq “
␣

tpx, µpxqq | x P Uu | µ : U Ñ r0, 1s
(

.

In the fuzzy systems literature ([TRK15], [ZZW23], [Pro+17], [Alo+21], [Jan+97])
it’s quite common to define fuzzy sets verbally, we try to give a description in
mathematical terms.
Definition 3.4 (Fuzzy system). Let U Ď Rn be the input universe and V Ď Rm

the output universe. Let r1, r2, r3, r4 P N0 and let

K “ Rr1 ˆ FpUq
r2 ˆ FpV q

r3 ˆ FpU ˆ V q
r4 .

Let F : U ˆ K Ñ FpUqp be the fuzzification algorithm, I : FpUqp ˆ K Ñ FpV qq

be the fuzzy inference algorithm and D : FpV qq ˆ K Ñ V be the defuzzification
algorithm.
Let K P K be the Knowledge Base, let FK “ F p¨, Kq be the fuzzification interface,
or fuzzification, let IK “ Ip¨, Kq be the fuzzy inference machine, or fuzzy inference,
and let DK “ Dp¨, Kq be the defuzzification interface, or defuzzification. Let f “

DK ˝ IK ˝ FK : U Ñ V , then we say that f is a fuzzy system with Knowledge Base
K or simply a fuzzy system.
If m “ 1 we call f a MISO (Multiple Inputs Single Output) fuzzy system.
If n, m “ 1 we call f a SISO (Single Input Single Output) fuzzy system.

Crisp input Fuzzification Fuzzy Inference Defuzzification Crisp output

Knowledge
Base

Fuzzy System

Figure 1: Fuzzy System processing input

In Figure 1 is represented a general fuzzy system.2
This definition is problematic because it is possible to prove that any function f :
U Ď Rn Ñ V Ď Rm is a fuzzy system, hence the definition is "too general". In fact,
let FU : U Ñ FpUq and FV : V Ñ FpV q be respectively the point fuzzification of U
and V , we choose

1. The fuzzification interface F “ FU

2. The fuzzy inference machine I “ FV ˝ f ˝ F ´1
U

3. As defuzzification interface D “ F ´1
V

notice that none of them depend on any knowledge base. We get that f “ D ˝ I ˝F ,
so f is a fuzzy system according to this definition.
For this purpose we provide a more specific definition that still includes all the fuzzy
systems we consider.

2Where "crisp" is used as "non-fuzzy"

9



3 Fuzzy systems

Definition 3.5 (Fuzzy system). Let U Ď Rn be the input universe and V Ď Rm

the output universe. Let r1, r2, r3, r4 P N0 and let

K “ Rr1 ˆ FpUq
r2 ˆ FpV q

r3 ˆ FpU ˆ V q
r4 .

Let F : U ˆK Ñ FpUq be the fuzzification algorithm, I : FpUqˆK Ñ FpV qq be the
fuzzy inference algorithm and D : FpV qq ˆ K Ñ V be the defuzzification algorithm.
Let K P K be the Knowledge Base, let FK “ F p¨, Kq be the fuzzification interface,
or fuzzification, let IK “ Ip¨, Kq be the fuzzy inference machine, or fuzzy inference,
and let DK “ Dp¨, Kq be the defuzzification interface, or defuzzification. Moreover

IpA, Kq “ pA ˝ R1pA, Kq, . . . , A ˝ RqpA, Kqq @ A P FpUq @ K P K ,

where R : FpUq ˆ K Ñ FpU ˆ V qq is the fuzzy rules generation algorithm, for each
i P t1, . . . , qu Ri : FpUq ˆ K Ñ FpU ˆ V q is the i-th fuzzy rule generation algorithm
and ˝ is a synthetic operation. Let RK “ Rp¨, Kq be the fuzzy rules generator and
let RK,i “ Rip¨, Kq be the i-th fuzzy rule generator.
Let f “ DK ˝IK ˝FK : U Ñ V , then we say that f is a fuzzy system with Knowledge
Base K or simply a fuzzy system.
If m “ 1 we call f a MISO (Multiple Inputs Single Output) fuzzy system.
If n, m “ 1 we call f a SISO (Single Input Single Output) fuzzy system.
If you want an even more specific definition check Definition A.1.
The are various fuzzification, fuzzy inference and defuzzification algorithms and
different choices lead to different types of fuzzy systems.
Definition 3.6 (Point fuzzification). Let U be the universe of discourse, let K be a
knowledge base, we define the point fuzzification algorithm F : U Ñ FpUq, so that

F px, Kq “ FKpxq “ Ax @ K P K ,

where Ax is the fuzzy set such that µAx “ χtxu.

3.2 Linguistic variables
At this point, we aim to provide an interpretation of the concepts defined so far
to make clear why the theories of fuzzy sets, fuzzy logic and fuzzy systems provide
a formal mathematical representation of human knowledge, reasoning and decision
making about complex problems. In fact, humans are able to control many processes
without requiring precise or complete knowledge of the problem or system. Instead,
they rely on a form of knowledge often empirical expressed through imprecise natural
language terms and conditional rules. A classic example can be found in how a
person regulates the temperature of a room. Consider a person entering a room and
feeling that it is "a bit cold." Without any precise knowledge about heat exchange
or ambient conditions, they might slightly turn up the heater. Later, if the room
feels "too warm," they might reduce the heating. These decisions are not based
on equations or measurements, but rather on subjective linguistic terms like "cold,"
"comfortable," or "hot" and still lead to satisfactory temperature regulation.
We can say humans reason in terms of linguistic variables that, informally speaking,
are variables whose values are not numbers, but rather words in natural language
and can be formally defined in the context of fuzzy set theory as follows:

10



3 Fuzzy systems

Definition 3.7 (Linguistic variable). A linguistic variable is a quintuple

x “ pN, U, L, G, Mq

where:
• N is the name of the variable x,
• U is the universe of discourse, i.e. a crisp or classical set,
• L is the set of linguistic values (terms) of x being a collection of labels for a

family of fuzzy sets of U

• G is the set of syntactic rules defined by grammar determing all terms in L,
• M is a semantic rule that defines the meaning of all labels in L, i.e. assigns

to each linguistic value in L a fuzzy set of U , i.e. we can see M as a function
M : L Ñ FpUq

Referring back to the initial example, we can consider temperature as name of a
linguistic variable, whose values might include cold, warm, and hot, each interpreted
as fuzzy sets over the universe of real numbers representing degrees.
Humans use linguistic variable in propositions expressed in natural language, for
example "the temperature is high". These propositions are represented in fuzzy set
theory as linguistic statement.
Definition 3.8 (Elementary linguistic statement). Let x “ pN, U, L, G, Mq a lin-
guistic variable. An elementary linguistic statement or elementary fuzzy expression
for x is an expression of the form

x is A

where A “ Mplq, l P L is a fuzzy set of U labeled by l. This elementary statement
should be read as: "N is l".
For example, let x be a linguistic variable with name N “ "temperature" and A “

Mphotq, then the statement x is A should be read "temperature is hot".
A more complex fuzzy expression can be obtained by combining two or more ele-
mentary expressions. It can be presented in the conjunctive form:

x1 is A1 and x2 is A2
or disjunctive form:

x1 is A1 or x2 is A2
or implication (or IF-THEN) form

if x1 is A1 then x2 is A2
where x1 and x2 are linguistic variables, A1 and A2 are fuzzy sets in their respective
universe. We can generalize from two to an arbitrary number of linguistic variables,
combine these forms and obtain, for example:

if x1 is A1 and x2 is A2 and ¨ ¨ ¨ and xn is An then y is B.
If the fuzzy sets A1, . . . , An, B are associated to linguistic values respectively l1, . . . , ln, l
the expression can be read as

If N1 is l1 and ... and Nn is ln then N is l

where N1, . . . , Nn, N are the name respectively of x1, . . . , xn, y.
For example, if N1 is temperature, N2 is humidity, N is speed, l1 is "hot", l2 is "dry"
and l is "fast", we can have read it like this:

If temperature is hot and humidity is dry then speed is fast

11



3 Fuzzy systems

In practical applications, fuzzy expressions are always represented as fuzzy sets.
For example, conjunctive forms are modeled as the Cartesian product of fuzzy sets,
while IF-THEN forms are expressed as fuzzy implications 3.
We will also use the following
Notation 3.9. Let U1, . . . , Un, V be universes of discourse, and let A1, . . . , An, B
be fuzzy sets respectively on U1, . . . , Un, V . The notation

IF x1 is A1 and ¨ ¨ ¨ and xn is An THEN z is B , (1)

stands for a fuzzy implication of the form

A1 ˆ ¨ ¨ ¨ ˆ An ùñ B .

This notation allow us to link the intuitive human thinking process, expressed in
the form of words, and fuzzy logic. This is what makes fuzzy systems "explainable"
compared to other mathematical tools used in the applications.
We will make an analogy with the human brain, to give a better understanding of
such design.
We have

1. The crisp input is an element x0 P U . It represents a measurement of some
physical quantity, for example the brightness of a color or the temperature of
an object.

2. The Knowledge Base is made up of fuzzy sets (in particular there can be fuzzy
relations and fuzzy implications) and real numbers, they are used as "pa-
rameters" of the fuzzification, fuzzy inference and defuzzification algorithms.
Intuitively, it is a set of information in all the phases of the "thought", for a
human it can be thought as its experience and knowledge.

3. The Fuzzification Interface takes as input x0 and, FKpx0q returns a fuzzy set A1.
This is similar to a human evaluation of the outer world through its senses,
humans get crisp inputs from the surrounding world by our sensory organs
and they get "interpreted" by our brain as sensations. Generally speaking
something can be interpreted in different ways depending on the knowledge
we have about it, for example a baby that never saw fire before may think it
is a kind of fun game to play with, but, after the first painful experience, the
baby will "interpret" differently fire and will associate a different "meaning"
to it. The fuzzy sets here represent how the brain interpreted the physical
quantities and they are interpreted in the form of "vague information".

4. The Fuzzy Inference Machine takes as input the fuzzy set A1 and IKpA1q returns
the fuzzy sets C1, . . . , Cq. This is similar to a human reasoning process, because
our brain "processed" the "vague information" it had and got to a conclusion,
that is still in the form of vague information.

5. The Defuzzification Interface DK takes as input the fuzzy sets C1, . . . , Cq and,
DKpC1, . . . , Cqq “ y0 returns a real number. The human equivalent in this case
is performing an action in the real world that best represents the conclusion
it got to. The conclusion is "vague", but, in order to perform an action, an
actual physical value is needed. For example if a human touches a very hot

3See previous section for the definitions of Cartesian product and fuzzy implication
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4 Fuzzy systems as universal approximators

object they will throw it immediately, and the "physical value" that is given
as "output" is the electrical impulse given to the arm, that in turns translates
to the speed of the arm getting away from the hot object.

4 Fuzzy systems as universal approximators
Notation 4.1 (Universal Approximators). We say that the elements of a class of
functions are universal approximators if they approximate with an arbitrary degree
of accuracy another class of functions, according to some metric.
In this section we expand some known results that prove that fuzzy systems are
universal approximators.

4.1 Wang Theorem
The following is a theorem due to [Wan92] and it makes use of the Stone-Weierstrass
Theorem.
Definition 4.2 (Algebra over a field). Let K be a field. An algebra over K or a
K-algebra is a structure pA, `, ¨, ‹q satisfying the following conditions:

1. pA, `, ¨q is a ring
2. pA, `, ‹q is a vector space on K
3. The operations ¨ : A ˆ A Ñ A and ‹ : K ˆ A Ñ A are "compatible", i.e.

pa ‹ xq ¨ pb ‹ yq “ pabq ‹ px ¨ yq @ a, b P K, @ x, y P A

Remark 4.1. There are some generalizations of this definition, for example it’s pos-
sible to give the definition of an algebra over a ring.
Theorem 4.1 (Stone-Weierstrass). Let U Ă Rn be a compact set and Z Ă CpUq.
If

1. Z is an algebra over R
2. Z separates the points on U i.e.

@ x, y P U : x ‰ y D f P Z : fpxq ‰ fpyq

3. Z vanishes at no point of U , i.e.

@ x P U Df P Z : fpxq ‰ 0

then Z is dense in CpUq, with respect to the 8-norm.
We define a set of MISO fuzzy systems XpUq on an input universe U Ď Rn and
output universe R, XpUq is parametrized by some "design parameters". For each
i P t1, . . . , nu,

1. The number mi P N
2. The fuzzy sets of the input universe tAj

i P FpUiq : 1 ď i ď n, 1 ď j ď miu,
where Ui “ ty P R : D x P U ^ xi “ yu

3. The number of fuzzy output sets m0 P N
4. Fuzzy sets of the output universe tBk P FpRq : 1 ď k ď m0u

5. The number of rules l P N

13



4 Fuzzy systems as universal approximators

6. For each k P t1, . . . , lu, a fuzzy rule of the form

Rk “ IF x1 is A
j1,k

1 and ¨ ¨ ¨ and xn is Ajn,k
n THEN z is Bj0,k , (2)

where 1 ď ji,k ď mi for every i P t0, . . . , nu.
7. The fuzzy inference algorithm4 I : FpUq ˆ K Ñ FpRqr3

8. The defuzzification algorithm: D : FpRqr3 ˆ K Ñ R
On the other hand, the fuzzification algorithm F is fixed and it doesn’t depend on
the knowledge base, so we identify it with the fuzzification interface and it is the
point fuzzification.
We construct a subset Y pUq of XpUq for which we will prove the universal approx-
imation property, in particular we will prove that, if U is compact, Y pUq is dense
in CpUq, the space of continuous real valued functions on a compact U Ď Rn with
respect to the 8-norm.
Let U Ď Rn be a compact, Y pUq Ă XpUq is the function space consisting of all
fuzzy systems f P X such that

• The input fuzzy sets have membership functions that are Gaussian functions
of the form

µAj
i
pxq “ aj

i exp

˜

´
1
2

ˆ

x ´ xi
j

σj
i

˙2
¸

(3)

with xj
i P R, 0 ă aj

i ď 1, σj
i P p0, 8q

• The output fuzzy sets have membership functions that are Gaussian functions
of the form

µBkpzq “ ak
0exp

˜

´
1
2

ˆ

z ´ zk

σk
0

˙2
¸

with zk P R, 0 ă ak
0 ď 1, σk

0 P p0, 8q

• The fuzzy inference algorithm is the product inference
• The defuzzification algorithm is the centroid defuzzification [WM+92]

Lemma 4.2. Let U Ă Rn be a compact, then Y pUq is the set consisting of all
functions f : U Ñ R of the form:

fpxq “

řl
k“1 zj0,k

śn
i“1 µ

A
ji,k
i

pxiq

řl
k“1

śn
i“1 µ

A
ji,k
i

pxiq
(4)

Moreover Y pUq Ď CpUq.

Proof. From the previous definition of Y pUq, an element f P Y pUq is of the form

f “ DK ˝ IK ˝ FK : U Ñ R

where
4At this point we can define our knowledge base

K “ tAj
i : 1 ď i ď n, 1 ď j ď miu Y tBk P FpRq : 1 ď k ď m0u Y tRk : 1 ď k ď lu
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• K “ tAj
i : 1 ď i ď n, 1 ď j ď miu Y tBk P FpRq : 1 ď k ď m0u Y tRk “

A
j1,k

1 ˆ ¨ ¨ ¨ ˆ A
jn,k
n ùñ Bj0,k : k “ 1, . . . , lu

• FK : U Ñ FpUq, IK : FpUq Ñ FpRql, DK : FpRql Ñ R are, respectively, the
the point fuzzification, the product inference and the centroid defuzzification.

According to product inference algorithm,

@A P FpUq, IKpAq “ pA ˝ R1, . . . , A ˝ Rlq

where @k “ 1, . . . , l, @z P R

µA˝Rk
pzq “ sup

x1PU
rµApx1

qµRk
px1, zqs “

“ sup
x1PU

rµApx1
qµ

A
j1,k
1

px1
1q ¨ ¨ ¨ µ

A
jn,k
n

px1
nqµB

j0,k pzqs

Let Ax “ FKpxq be the fuzzy singleton of x, then IK ˝ FKpxq “ IKpAxq “ pAx ˝

R1, . . . , Ax ˝ Rlq where @k “ 1, . . . , l, @z P R

µAx˝Rk
pzq “ sup

x1PU
rµAxpx1

qµ
A

j1,k
1

px1
1q ¨ ¨ ¨ µ

A
jn,k
n

px1
nqµB

j0,k pzqs “

“ µAxpxqµ
A

j1,k
1

px1q ¨ ¨ ¨ µ
A

jn,k
n

pxnqµB
j0,k pzq “

“ µ
A

j1,k
1

px1q ¨ ¨ ¨ µ
A

jn,k
n

pxnqµB
j0,k pzq “

“ µB
j0,k pzq

n
ź

i“1
µ

A
ji,k
i

pxiq .

In general, centroid defuzzification DK : FpRql Ñ R takes as input a l-tuple
pC1, . . . , Clq of fuzzy sets of R and computes a weighted sum of the centroids 5

of each Ck.
In this case, centroid defuzzification means that the nonfuzzy output of the fuzzy
system for input x is a weighted sum of the centroids of Ax ˝ R1, . . . , Ax ˝ Rl where
the weights are determined by the product inference as

śn
i“1 µ

A
ji,k
i

pxiq.6

In conclusion,

fpxq “ DK ˝ IK ˝ FKpxq “ DKpAx ˝ R1, . . . , Ax ˝ Rlq “

řl
k“1 ck

śn
i“1 µ

A
ji,k
i

pxiq

řl
k“1

śn
i“1 µ

A
ji,k
i

pxiq

5For a continuous membership function µ : R Ñ r0, 1s, the centroid is
ż

R
z µpzq dz

ż

R
µpzq dz

6If we view the fuzzy inference machine and defuzzification interface as an integrated part, then
product inference can be explained as that the weight of rule Rk to the contribution of determining
the output of fuzzy system for input x P U equals

śn
i“1 µ

A
ji,k
i

pxiq.
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where ck is the centroid of Ax ˝ Rk. On the other hand, for each k “ 1, . . . , l,

µAx˝Rk
pzq “ µB

j0,k pzq

n
ź

i“1
µ

A
ji,k
i

pxiq “

“

«

a
j0,k

0

n
ź

i“1
µ

A
ji,k
i

pxiq

ff

exp

¨

˝´
1
2

˜

z ´ zj0,k

σ
j0,k

0

¸2
˛

‚ą 0

since 0 ă a
j0,k

0 ď 1, 0 ă
śn

i“1 µ
A

ji,k
i

pxiq ď 1.
As a result, @k “ 1, . . . l, ck “ zj0,k (see Proposition A.1) and

fpxq “

řl
k“1 zj0,k

śn
i“1 µ

A
ji,k
i

pxiq

řl
k“1

śn
i“1 µ

A
ji,k
i

pxiq
.

The function f is well-defined and continuous on U because @i “ 1, . . . , n, @k “

1, . . . , l, µ
A

ji,k
i

pxiq is a Gaussian function so, is non zero and continuous in the i-th
component of x. This means Y pUq Ď CpUq.
Theorem 4.3 (Wang). Let U Ă Rn be a compact universe of discourse, Y pUq is
dense in CpUq with respect to 8-norm, that is

@ g P CpUq @ε ą 0 Df P Y pUq : d8pf, gq “ sup
xPU

|fpxq ´ gpxq| ă ε

Proof. Let us denote Y “ Y pUq, we want to prove that Y is not empty. For each 1 ď

i ď n we can choose mi P N and the parameters xj
i , σj

i , aj
i for each j P t1, . . . , miu,

we define the input fuzzy sets with membership functions µAj
i

: Ui Ñ R of the form
Equation 3; we can choose also m0 P N and µBk : R Ñ R for each k P t1, . . . , m0u in
the same way. We can choose l P N and l rules of the form Equation 2, this way we
built the knowledge base

K “ tAj
i : 1 ď i ď n, 1 ď j ď miu Y tBk

P FpV q : 1 ď k ď m0u Y tRk : 1 ď k ď lu .

The fuzzification algorithm F , the fuzzy inference algorithm I, the defuzzification
algorithm D are fixed in Y . Since the fuzzification algorithm is independent on the
knowledge base we denote the fuzzification interface as F , with K we determine
the fuzzy inference machine IK and the defuzzification function DK . Finally f “

DK ˝ IK ˝ FK P Y .
For Lemma 4.2, Y is a set of real continuous functions, we want to show that Y
satisfies the conditions of the Theorem 4.1.
In order to prove that Y is an algebra on R, we just need to prove that is closed
under its operations: sum of real functions, product of real functions and the scalar
multiplication of a real function, because the other properties are inherited from the
algebra CpUq in which Y is contained. Let f1, f2 P Y , then they are of the form
Equation 4

f1pxq “

řl1
k“1 zj0,k

śn
i“1 µ

A
ji,k
i

pxiq

řl1
k“1

śn
i“1 µ

A
ji,k
i

pxiq
,
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f2pxq “

řl2
s“1 y t0,s

śn
i“1 µ

C
ti,s
i

pxiq

řl2
s“1

śn
i“1 µ

C
ti,s
i

pxiq
,

where Aj
i and Cs

i are the input fuzzy sets, l1 and l2 are the number of fuzzy rules,
respectively of f1, f2. We have For notational simplicity set

Wkpxq “

n
ź

i“1
µ

A
ji,k
i

pxiq , Vspxq “

n
ź

i“1
µ

C
ti,s
i

pxiq .

Then

f1pxq “

řl1
k“1 z j0,k Wkpxq
řl1

k“1 Wkpxq
, f2pxq “

řl2
s“1 y t0,s Vspxq
řl2

s“1 Vspxq
,

so

f1pxq ` f2pxq “

řl1
k“1 z j0,kWkpxq
řl1

k“1 Wkpxq
`

řl2
s“1 y t0,sVspxq
řl2

s“1 Vspxq

“

`
řl1

k“1 z j0,kWk

˘`
řl2

s“1 Vs

˘

`
`
řl2

s“1 y t0,sVs

˘`
řl1

k“1 Wk

˘

řl1
k“1 Wk

řl2
s“1 Vs

“

l1
ÿ

k“1

l2
ÿ

s“1

´

z j0,kWkVs ` y t0,sWkVs

¯

l1
ÿ

k“1

l2
ÿ

s“1
WkVs

“

l1
ÿ

k“1

l2
ÿ

s“1

´

z j0,k ` y t0,s

¯

WkVs

l1
ÿ

k“1

l2
ÿ

s“1
WkVs

“

l1
ÿ

k“1

l2
ÿ

s“1

´

z j0,k ` y t0,s

¯
n
ź

i“1
µ

A
ji,k
i

pxiqµC
ti,s
i

pxiq

l1
ÿ

k“1

l2
ÿ

s“1

n
ź

i“1
µ

A
ji,k
i

pxiqµC
ti,s
i

pxiq

“

l1
ÿ

k“1

l2
ÿ

s“1

´

w h0,k,s

¯
n
ź

i“1
µ

E
hi,k,s
i

pxiq

l1
ÿ

k“1

l2
ÿ

s“1

n
ź

i“1
µ

E
hi,k,s
i

pxiq

.

For each i P t1, . . . , nu and for each pair pk, sq P t1, . . . , l1u ˆ t1, . . . , l2u, we de-
fine a new rule whose antecedent E

hi,k,s

i has membership function µ
E

hi,k,s
i

pxiq “

µ
A

ji,k
i

pxiq µ
C

ti,s
i

pxiq : Ui Ñ R, for Proposition A.2, it is a function of the form Equa-
tion 3. For each pair pk, sq, we can choose any output fuzzy set F pk,sq such that
µF pk,sq is a gaussian function of the form Equation 3 and its mean is w h0,k,s , for
Proposition A.1, its centroid is w h0,k,s , therefore f1 ` f2 P Y .
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Similarly,

f1pxq f2pxq “

řl1
k“1 z j0,kWk
řl1

k“1 Wk

¨

řl2
s“1 y t0,sVs
řl2

s“1 Vs

“

`
řl1

k“1 z j0,kWk

˘`
řl2

s“1 y t0,sVs

˘

řl1
k“1 Wk

řl2
s“1 Vs

“

l1
ÿ

k“1

l2
ÿ

s“1
z j0,kWk y t0,sVs

l1
ÿ

k“1

l2
ÿ

s“1
WkVs

“

l1
ÿ

k“1

l2
ÿ

s“1

´

z j0,k y t0,s

¯

WkVs

l1
ÿ

k“1

l2
ÿ

s“1
WkVs

.

“

l1
ÿ

k“1

l2
ÿ

s“1

´

z j0,k y t0,s

¯
n
ź

i“1
µ

A
ji,k
i

pxiqµC
ti,s
i

pxiq

l1
ÿ

k“1

l2
ÿ

s“1

n
ź

i“1
µ

A
ji,k
i

pxiqµC
ti,s
i

pxiq

“

l1
ÿ

k“1

l2
ÿ

s“1

´

w h0,k,s

¯
n
ź

i“1
µ

E
hi,k,s
i

pxiq

l1
ÿ

k“1

l2
ÿ

s“1

n
ź

i“1
µ

E
hi,k,s
i

pxiq

We introduce rules with the same antecedents E
hi,k,s

i as before and consequents
F pk,sq with gaussian membership and such that its centroid is w h0,k,s “ z j0,k y t0,s ,
we conclude that f1f2 P Y .
Finally, for any α P R,

α f1pxq “

řl1
k“1pα z j0,kq

śn
i“1 µ

A
ji,k
i

pxiq

řl1
k“1

śn
i“1 µ

A
ji,k
i

pxiq
“

řl1
k“1pw j0,kq

śn
i“1 µ

A
ji,k
i

pxiq

řl1
k“1

śn
i“1 µ

A
ji,k
i

pxiq
,

so we can consider the same fuzzy system, but with consequents of the rules such
that their centroids are w j0,k “ αz j0,k , shows αf1 P Y .
Now we prove that Y separates points on U . Let x0, y0 P U be such that x0 ‰ y0.
Then there exist i P t1, . . . , nu such that x0

i ‰ y0
i . For each 1 ď i ď n, in the i-th

subspace of U , Ui, we define two fuzzy sets with membership functions

µA1
i
pxiq “ exp

„

´
pxi ´ x0

i q2

2

ȷ

, µA2
i
pxiq “ exp

„

´
pxi ´ y0

i q2

2

ȷ

,

notice that if x0
i “ y0

i then A1
i “ A2

i . In the output universe R we define two fuzzy
sets with Gaussians memebership functions

µBj pzq “ exp
„

´
pz ´ zjq2

2

ȷ

@ j P t1, 2u

where z1, z2 will be chosen below. Let the rules consist of

R1 : A1
1 ˆ ¨ ¨ ¨ ˆ A1

n ùñ B1, R2 : A2
1 ˆ ¨ ¨ ¨ ˆ A2

n ùñ B2,
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so that f P Y and has the form

fpxq “
z1 śn

k“1 µA1
k
pxkq ` z2 śn

k“1 µA2
k
pxkq

śn
k“1 µA1

k
pxkq `

śn
k“1 µA2

k
pxkq

.

Set
α “

1

1 `

n
ź

k“1
exp

“

´px0
k ´ y0

kq
2
{2
‰

,

so that at x0 and y0 one finds

fpx0
q “

z1 ` z2 śn
k“1 µA2

k
px0

kq

1 `
śn

k“1 µA2
k
px0

kq
“ α z1

` p1 ´ αq z2,

fpy0
q “

z1 śn
k“1 µA1

k
py0

kq ` z2
śn

k“1 µA1
k
py0

kq ` 1 “ α z2
` p1 ´ αq z1 .

Notice that

x0
i “ y0

i @ i P t1, . . . , nu ðñ

n
ź

k“1
exp

“

´px0
k ´ y0

kq
2
{2
‰

“ 1 ðñ α “
1
2 ,

so α ‰ 1{2, that is α ‰ 1 ´ α. Choosing z1 “ 0, z2 “ 1 gives
fpx0

q “ 1 ´ α ‰ α “ fpy0
q ,

so Y separates points on U .
Finally we need to prove that Y vanishes at no point in U . If we choose zj0,k ą

0, @k “ 1, . . . , l, then @x P U ,

fpxq “

řl
k“1 zj0,k

śn
i“1 µ

A
ji,k
i

pxiq

řl
k“1

śn
i“1 µ

A
ji,k
i

pxiq
‰ 0 .

Now we can apply the Theorem 4.1 on pY, d8q and conclude that it is dense in
CpUq.
If U Ă Rn is a compact, then CpUq Ď L2pUq and we can generalize the above
theorem to L2pUq “ tg : U Ñ R :

ş

U
|gpxq|2dx ă 8u.

Corollary 4.3.1. Let U Ă Rn be a compact, Y pUq is dense in L2pUq with respect
to L2-norm, i.e. @g P L2pUq, @ε ą 0, Df P Y pUq : p

ş

U
|fpxq ´ gpxq|2dxq

1
2 ă ε

Proof. Continuous functions on U form a dense subset of L2pUq with respect to
L2-norm, that is @g P L2pUq, @ε ą 0, D g P CpUq : p

ş

U
|gpxq ´ gpxq|2dxq

1
2 ă ε

2 .
On the other hand, if g P CpUq, then Df P Y pUq : supxPU |fpxq ´ gpxq| ă ε

2V
1
2

where
V “

ş

U
dx ă 8 because U is compact. Hence, we have

}f ´ g}2 ď }f ´ g}2 ` }g ´ g}2 “

ˆ
ż

U

|fpxq ´ gpxq|
2dx

˙
1
2

`

ˆ
ż

U

|gpxq ´ gpxq|
2dx

˙
1
2

ď

ď

ˆ
ż

U

psup
xPU

|fpxq ´ gpxq|q
2dx

˙
1
2

`
ε

2 ď

ď

ˆ
ż

U

p
ε

2V
1
2

q
2dx

˙
1
2

`
ε

2 “

ˆ

ε2V

22V

˙
1
2

`
ε

2 “ 2ε

2 “ ε
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4 Fuzzy systems as universal approximators

4.2 Additive Fuzzy System (AFS)
In this section we introduce the class of Additive Fuzzy Systems (AFS) ([TRK15],
[WM+92]), prove that they are universal approximators ([Kos94]) and show that
Wang’s theorem can be seen as a special case.
Definition 4.3 (Additive Centroidal Fuzzy System). An Additive Centroidal Fuzzy
System, or Additive fuzzy system for short, is a rule based fuzzy system f : U Ď

Rn Ñ Rp that maps inputs to outputs by summing fired then-parts sets and then
taking the centroid of the sum.
More precisely, an additive fuzzy system is a fuzzy system

f “ DK ˝ IK ˝ FK : U Ď Rn
Ñ Rp

where
• K “ FpU ˆ Rpqs for some s P N
• K P K is a set of s fuzzy implication relations on U ˆ Rp, i.e.

K “ tRi “ Ai ùñ Bi : i “ 1, . . . , su

where @i “ 1, . . . , s, Ai P FpUq, Bi P FpRpq

• FK : U Ñ FpUq is a certain fuzzification interface
• IK : FpUq Ñ FpRpq is a fuzzy inference that we denote @A P FpUq,

IKpAq “

s
ÿ

i“1
wipAqBA

i

that is, @y P Rp

µIKpAqpyq “

s
ÿ

i“1
wipAqµBA

i
pyq

where @i “ 1, . . . , s, wipAq ą 0 is a scalar depending on A and BA
i P FpRpq

is a fuzzy set depending on K and A, called i-th fired then-part set (or fired
then-part set of i-th rule Ri or fired Bi for short)7. We denote @x P U

µIK˝FKpxq “

s
ÿ

i“1
wipxqµBx

i

the output of IK ˝ FK for input x.
• DK : FpRpq Ñ Rp is the centroid defuzzification, i.e. B P FpRpq

DKpBq “

ż

Rp

yµBpyqdy
ż

Rp

µBpyqdy
“

¨

˚

˚

˝

ż

Rp

y1µBpyqdy
ż

Rp

µBpyqdy
, . . . ,

ż

Rp

ypµBpyqdy
ż

Rp

µBpyqdy

˛

‹

‹

‚

.

7Note that it is not required that the weights twipAqui “ 1, . . . , s sum to unity. According
to the definitions given so far, in general IKpAq isn’t a fuzzy set since µIK pAq is r0, `8q´valued
and not r0, 1s´valued. However we can consider a generalized membership function that is a
r0, `8q-valued function.
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4 Fuzzy systems as universal approximators

It is required an additional condition: @x P U , @i “ 1, . . . , s, Bx
i is a fuzzy set of Rp

with integrable membership function and
ż

Rp

µBx
j
pyqdy ą 0 ,

for some j “ 1, . . . , s.
Remark 4.2. Note that the previous condition is required for the subsequent defuzzi-
fication interface. In fact, the condition ensures that @x P U,

ş

Rp µIK˝FKpxqpyqdy ą 0
and it makes sense to consider the centroid of µIK˝FKpxq. Moreover, this condition
can be achieved by requiring a combination of properties on the knowledge base K,
the fuzzification interface FK and the inference IK .
Putting the pieces together, we have f : U Ď Rn Ñ Rp such that @x P U

fpxq “

ż

Rp

s
ÿ

i“1
wipxqyµBx

i
pyqdy

ż

Rp

s
ÿ

i“1
wipxqµBx

i
pyqdy

where @i “ 1, . . . , s, wipxq ą 0 is a scalar depending on x, Bx
i P FpRpq is the Bi

fired by x and
ş

Rp µBx
j
pyqdy ą 0 for some j “ 1, . . . , s.

This additive structure produces a simple convex-sum structure: outputs are convex
combinations of the centroids of the fired then-part sets.
Lemma 4.4. Let f : U Ď Rn Ñ Rp be an additive fuzzy system.
If @x P U, @i “ 1 . . . , s,

ż

Rp

µBx
i
pyqdy ą 0

8 then
@x P U ,

fpxq “

s
ÿ

i“1
pipxqcipxq

where @x P U, @i “ 1, . . . , s, pipxq ą 0,
řs

i“1 pipxq “ 1 9 and cipxq is the centroid of
Bi fired by x, i.e.

cipxq “

ş

Rp yµBx
i
pyqdy

ş

Rp µBx
i
pyqdy

P Rp

Proof. @x P U ,

fpxq “

ż

Rp

s
ÿ

i“1
wipxqyµBx

i
pyqdy

ż

Rp

s
ÿ

i“1
wipxqµBx

i
pyqdy

“

s
ÿ

i“1
wipxq

ż

Rp

yµBx
i
pyqdy

s
ÿ

i“1
wipxq

ż

Rp

µBx
i
pyqdy

“

“

s
ÿ

i“1

„

wipxq

ż

Rp

µBx
i
pyqdy

ȷ

cipxq

s
ÿ

i“1
wipxq

ż

Rp

µBx
i
pyqdy

“

s
ÿ

i“1
pipxqcipxq

8This hypotesis is necessary to ensure that @i “ 1, . . . , s is well defined the centroid of µBx
i9equivalently, pi : U Ñ r0, 1s :

řs
i“1 pi “ 1
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4 Fuzzy systems as universal approximators

where @i “ 1, . . . , s @x P U

pipxq “

wipxq

ż

Rp

µBx
i
pyqdy

s
ÿ

i“1
wipxq

ż

Rp

µBx
i
pyqdy

Obviously, @x P U,
řs

i“1 pipxq “ 1.
Moreover, @x P U, pipxq ą 0 because wipxq,

ş

Rp µBx
i
pyqdy ą 0 by hypotheses.

Notation 4.4. The class of all additive fuzzy systems from U Ď Rn to Rp is denoted
by AFSpU,Rpq.
We now consider two particular classes of additive fuzzy systems.
The first one, denoted by AFSprodpU,Rpq, consists of all additive fuzzy systems
f P AFSpU,Rpq such that:

@A P FpUq, µIKpAq “

s
ÿ

i“1
wipAqaipA, KqµBi

where @i “ 1, . . . , s, aipA, Kq P r0, 1s.
The second one, denoted by AFSminpU,Rpq, consists of all additive fuzzy systems
f P AFSpU,Rpq such that:

@A P FpUq, µIKpAq “

s
ÿ

i“1
wipAq minpaipA, Kq, µBi

q

where @i “ 1, . . . , s, aipA, Kq P r0, 1s.
In both cases, the scalars aipA, Kq P r0, 1s have the meaning of activation value of
i-th rule Ri in A or i-th activation value in A.
Remark 4.3. Typically, the i-th activation value of A is determined as the inner
product between A and the antecedent Ai of i-th rule, that is

aipA, Kq “ A ˝ Ai “
ł

xPU

µApxq ^ µAi
pxq

where _ and ^ are, respectively, a t-conorm and t-norm.
Theorem 4.5 (Kosko). Let U Ă Rn be a compact, then AFSprodpU,Rpq and AFSminpU,Rpq

are dense in CpU,Rpq with respect to 8-norm.
Remark 4.4. In the proof, we denote by | ¨ | both the 2-norm in Rn and 2-norm in
Rp. It will be clear from the argument if it refers to Rn or Rp

Proof. Let f P CpU,Rpq then f is continuous on U compact, i.e. f is uniformly
continuous, that is

@ε ą 0, Dδ ą 0 : @x1, x2 P U : |x1 ´ x2| ă δ, |fpx1q ´ fpx2q| ă ε

Since U is compact, it is possible to cover U with a finite family of open cubes, each
having center in U and diameter ă δ

2 . In fact, @x P U , let consider the open cube
Mx “ px1 ´ ρ, x1 ` ρq ˆ ¨ ¨ ¨ ˆ pxn ´ ρ, xn ` ρq with 0 ă ρ ă δ

4
?

n
then we have

• U Ď
Ť

xPU Mx
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4 Fuzzy systems as universal approximators

• @x P U, diampMxq “ 2ρ
?

n ă 2
?

n δ
4

?
n

“ δ
2

tMx : x P Uu is an open cover of the compact U , then a finite subcover of U exists,
i.e. Dx1, . . . , xs P U : Mxi

“ Mi, U Ď
Ťs

i“1 Mi and @i “ 1, . . . , s, Mi is an open cube
with center xi P U and diampMiq ă δ

2 .
As a consequence,

• @i “ 1, . . . , s, @u, w P Mi X U, |u ´ w| ď diampMiq ă δ
2 ă δ and then |fpuq ´

fpwq| ă ε

• @j, k “ 1, . . . , s : Mj X Mk ‰ H, @u P Mj X U, w P Mk X U, |u ´ w| ă δ and
then |fpuq ´ fpwq| ă ε

In particular,
• @x P U, Di “ 1, . . . , s : x P Mi and @i “ 1, . . . , s : x P Mi, |fpxq ´ fpxiq| ă ε

• @j, k “ 1, . . . , s : Mj X Mk ‰ H, |fpxiq ´ fpxjq| ă ε

Let consider a fuzzy system F P AFSprodpU,Rpq with the following properties:
• the knowledge base is K “ tRi “ Ai ùñ Bi : i “ 1, . . . , su where @i “

1, . . . , s, Ai P FpUq : µAi
pxq ‰ 0 ðñ x P Mi and Bi P FpRpq : µBi

has
centroid in fpxiq, i.e.

ż

Rp

µBi
pyqdy ą 0

and

CpµBi
q “

ż

Rp

yµBi
pyqdy

ż

Rp

µBi
pyqdy

“ fpxiq

• FK : U Ñ FpUq is the point fuzzification
• IK is the following inference machine:

@A P FpUq, µIKpAq “

s
ÿ

i“1
µBA

i

where @i “ 1, . . . s, µBA
i

“ aipA, KqµBi
and aipA, Kq “ supxPU µApxqµAi

pxq

It follows that @x1 P U , let Ax1 “ FKpx1q, then @i “ 1, . . . , s

aipAx1 , Kq “ µAi
px1

q

and then

µIKpAx1 q “

s
ÿ

i“1
µBx1

i
“

s
ÿ

i“1
µAi

px1
qµBi

Since @x1 P U, Di “ 1, . . . , s : x1 P Mi, it follows that Di “ 1, . . . , s : µAi
px1q ą 0 and

then
ż

Rp

µAi
px1

qµBi
pyqdy ą 0

.
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By applying the centroid defuzzification DK we obtain that

F px1
q “

s
ÿ

i“1

ż

Rp

yµBx1

i
pyqdy

s
ÿ

i“1

ż

Rp

µBx1

i
pyqdy

“

“

s
ÿ

i“1
µAi

px1
q

ż

Rp

yµBi
pyqdy

s
ÿ

i“1
µAi

px1
q

ż

Rp

µBi
pyqdy

“

“

s
ÿ

i“1

„

µAi
px1

q

ż

Rp

µBi
pyqdy

ȷ

CpµBi
q

s
ÿ

i“1
µAi

px1
q

ż

Rp

µBi
pyqdy

“

“

s
ÿ

i“1

„

µAi
px1

q

ż

Rp

µBi
pyqdy

ȷ

fpxiq

s
ÿ

i“1
µAi

px1
q

ż

Rp

µBi
pyqdy

“

“

s
ÿ

i“1
cipx

1
qfpxiq

where @i “ 1, . . . , s

0 ď cipx
1
q “

µAi
px1q

ż

Rp

µBi
pyqdy

s
ÿ

i“1
µAi

px1
q

ż

Rp

µBi
pyqdy

ď 1

and they sum to unity, that is F px1q is a convex combination of the centroids fpxiq.
On the other hand, µAi

px1q ‰ 0 ðñ x1 P Mi then F px1q is a convex combination
of the centroids tCpµBi

q “ fpxiq : x1 P Miu i.e.

F px1
q “

ÿ

1ďiďs,
x1PMi

cipx
1
qfpxiq
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4 Fuzzy systems as universal approximators

with 0 ă cipx
1q and

řs
i“1,x1PMi

cipx
1q “ 1. In conclusion, @x1 P U

|F px1
q ´ fpx1

q| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

1ďiďs,
x1PMi

cipx
1
qfpxiq ´ fpx1

q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

1ďiďs,
x1PMi

cipx
1
qfpxiq ´

ÿ

1ďiďs,
x1PMi

cipx
1
qfpx1

q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

1ďiďs,
x1PMi

cipx
1
qpfpxiq ´ fpx1

qq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ď
ÿ

1ďiďs,
x1PMi

cipx
1
q |fpxiq ´ fpx1

q| ď

ď
ÿ

1ďiďs,
x1PMi

cipx
1
qε ď

ď ε
ÿ

1ďiďs,
x1PMi

cipx
1
q “

“ ε

(5)

This conclude the proof for AFSprodpU,Rpq.
For AFSminpU,RP q, the proof is the same with the difference that the membership
function µBi

is required to be symmetric and centered on fpxiq and

@A P FpUq, µIKpAq “

s
ÿ

i“1
µBA

i

where @i “ 1, . . . s, µBA
i

“ minpaipA, Kq, µBi
q and aipA, Kq “ supxPU µApxqµAi

pxq

It follows that @x1 P U , let Ax1 “ FKpx1q, then @i “ 1, . . . , s

aipAx1 , Kq “ µAi
px1

q

and then

µIKpAx1 q “

s
ÿ

i“1
µBx1

i
“

s
ÿ

i“1
minpµAi

px1
q, µBi

q

Since @x1 P U, Di “ 1, . . . , s : x1 P Mi, it follows that Di “ 1, . . . , s : µAi
px1q ą 0 and

then
ż

Rp

minpµAi
px1

q, µBi
qpyqdy ą 0.

From the hypothesis of symmetry of µBi
it follows that if µAi

px1q ą 0 then µBx1

i
“

25



4 Fuzzy systems as universal approximators

minpµAi
px1q, µBi

q has the same centroid of µBi
i.e. CpµBx1

i
q “ fpxiq. Then, @x1 P U

F px1
q “

s
ÿ

i“1

ż

Rp

yµBx1

i
pyqdy

s
ÿ

i“1

ż

Rp

µBx1

i
pyqdy

“

“

s
ÿ

i“1
CpµBx1

i
q

ż

Rp

µBx1

i
pyqdy

s
ÿ

i“1

ż

Rp

µBx1

i
pyqdy

“

“

s
ÿ

i“1
fpxiq

ż

Rp

µBx1

i
pyqdy

s
ÿ

i“1

ż

Rp

µBx1

i
pyqdy

“

“

s
ÿ

i“1
cipx

1
qfpxiq

where @i “ 1, . . . , s

0 ď cipx
1
q “

ż

Rp

µBx1

i
pyqdy

s
ÿ

i“1

ż

Rp

µBx1

i
pyqdy

ď 1

and they sum to unity, that is F px1q is a convex combination of the centroids fpxiq.
However, µAi

px1q ‰ 0 ðñ x1 P Mi and if µAi
px1q “ 0 then

cipx
1
q “

ż

Rp

µBx1

i
pyqdy “

ż

Rp

minpµAi
px1

q, µBi
qpyqdy “ 0

It follows that F px1q is a convex combination of the centroids tfpxiq : x1 P Miu i.e.

F px1
q “

ÿ

1ďiďs,
x1PMi

cipx
1
qfpxiq

with 0 ď cipx
1q and

řs
i“1,x1PMi

cipx
1q “ 1. It is possible to conclude as in Equation 5.

Remark 4.5. We can observe that in the case of AFSprodpU,Rpq, we can construct a
fuzzy system F that approximate the function f also by choosing the membership
functions µAi

such that

µAi
pxq “

$

&

%

ă
ε

mi

ş

Rp µBi
pyqdy

x R Mi

ě γi @x P U
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where mi “ maxxPU |fpxq ´ fpxiq|,10 which exists because f is continuous in U
compact, and 0 ă γi ă 1. In this case, still holds that x P Mi ùñ µAi

pxq ą γi ą 0
and still holds that @x1 P U

F px1
q “

s
ÿ

i“1
cipx

1
qfpxiq

with

0 ď cipx
1
q “

µAi
px1q

ż

Rp

µBi
pyqdy

s
ÿ

i“1
µAi

px1
q

ż

Rp

µBi
pyqdy

ď 1,
s
ÿ

i“1
cipx

1
q “ 1

but we can’t conclude as in Equation 5. However, @x1 P U we have that

0 ď
ÿ

1ďiďs,
x1PMi

cipx
1
q ď 1

and @i “ 1, . . . , s : x1 R Mi

cipx
1
q ă

ε

mi

s
ÿ

i“1
γi

ż

Rp

µBi
pyqdy

10Note that if mi “ 0 for some i “ 1, . . . , s, f is constant in U and for any choice of µAi
we have

F “ f
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We can conclude, @x1 P U

|F px1
q ´ fpx1

q| “

ˇ

ˇ

ˇ

ˇ

ˇ

s
ÿ

i“1
cipx

1
qfpxiq ´ fpx1

q

ˇ

ˇ

ˇ

ˇ

ˇ

“

“

ˇ

ˇ

ˇ

ˇ

ˇ

s
ÿ

i“1
cipx

1
qfpxiq ´

s
ÿ

i“1
cipx

1
qfpx1

q

ˇ

ˇ

ˇ

ˇ

ˇ

“

“

ˇ

ˇ

ˇ

ˇ

ˇ

s
ÿ

i“1
cipx

1
q rfpxiq ´ fpx1

qs

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

1ďiďs,
x1PMi

cipx
1
q rfpxiq ´ fpx1

qs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

1ďiďs,
x1RMi

cipx
1
q rfpxiq ´ fpx1

qs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ď
ÿ

1ďiďs,
x1PMi

cipx
1
q |fpxiq ´ fpx1

q| `
ÿ

1ďiďs,
x1RMi

cipx
1
q |fpxiq ´ fpx1

q| ď

ď
ÿ

1ďiďs,
x1PMi

cipx
1
qε `

ÿ

1ďiďs,
x1RMi

ε

mi

s
ÿ

i“1
γi

ż

Rp

µBi
pyqdy

|fpxiq ´ fpx1
q| ď

ď
ÿ

1ďiďs,
x1PMi

cipx
1
qε `

ÿ

1ďiďs,
x1RMi

ε

mi

s
ÿ

i“1
γi

ż

Rp

µBi
pyqdy

mi ď

ď ε
ÿ

1ďiďs,
x1PMi

cipx
1
q ` ε

ÿ

1ďiďs,
x1RMi

1
s
ÿ

i“1
γi

ż

Rp

µBi
pyqdy

ď

ď ε ` ε
s
ÿ

i“1

1
s
ÿ

i“1
γi

ż

Rp

µBi
pyqdy

“

“ ε

¨

˚

˚

˚

˝

1 `

s
ÿ

i“1

1
s
ÿ

i“1
γi

ż

Rp

µBi
pyqdy

˛

‹

‹

‹

‚

“

“ εθ

where θ ą 0 is constant in x1 P U .
Moreover, we can use this proof to demonstrate and generalize the previous Wang’s
theorem without using the Stone-Weierstrass theorem: let U Ď Rn be a compact,
Wang’s theorem proves the density in CpU,Rq for a class of fuzzy systems that form a
subclass of AFSprodpU,Rq. In fact, a fuzzy systems f P Y pUq, in the class considered
by Wang’s theorem, has as knowledge base a finite set of fuzzy implications of U ˆR
such that both membership functions of antecendets and membership functions of
consequents are Gaussian functions, i.e

K “ tRi “ Ai ùñ Bi : i “ 1, . . . , su
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such that @i “ 1, . . . , s

@x P U, µAi
pxq “ αiexp

˜

´
1
2

ˇ

ˇ

ˇ

ˇ

x ´ xi

σi

ˇ

ˇ

ˇ

ˇ

2
¸

“

“ αi

n
ź

k“1
exp

˜

´
1
2

ˆ

xk ´ xi,k

σi

˙2
¸

@x P R, µBi
pxq “ βiexp

˜

´
1
2

ˆ

x ´ νi

γi

˙2
¸

with 0 ă αi, βi ď 1, γi, σi P p0, `8q, νi P R, xi P Rn @i “ 1, . . . , s. Then the output
of fuzzification and inference is @x P U

µIK˝FKpxq “

s
ÿ

i“1
wiµAi

pxqµBi

where @i “ 1, . . . , s

wi “

ˆ
ż

R
µBi

pyqdy

˙´1

Finally the output of centroid defuzzification is
řs

i“1 νiµAi
pxq

řs
i“1 µAi

pxq

In other words, is the subclass of AFSprodpU,Rq where membership functions are
Gaussian membership functions, the fuzzification interface is the point fuzzification

and in the inference @A P FpUq, wipAq “

ˆ
ż

R
µBi

pyqdy

˙´1

and aipA, Kq “ A˝Ai “

supxPU µApxqµAi
pxq.

We can also consider multivariate Gaussian membership functions for the con-
sequents Bi of the rules and obtain a generalization of the class Y pUq, namely
Y pU,Rpq Ď AFSprodpU,Rpq with Gaussian membership functions both for antecen-
dents and consenquets of the rules, point fuzzification, and inference such that @A P

FpUq, wipAq “

ˆ
ż

Rp

µBi
pyqdy

˙´1

and aipA, Kq “ A ˝ Ai “ supxPU µApxqµAi
pxq.

We can prove that if U Ă Rn is compact, Y pU,Rpq is dense in CpU,Rpq with respect
to 8-norm, by adapting the proof of Kosko’s theorem as follows:

• Construct the finite cover of open cubes of U as in the proof of Kosko’s theorem
• @i “ 1, . . . , s choose µBi

as a Gaussian function centered in fpxiq P Rp and
µAi

as Gaussian function such that @x R Mi, µAi
pxq ď

ε

mi

where
mi “ maxxPU |fpxq ´ fpxiq| 11

• Observe that since @i “ 1, . . . , s µAi
is a Gaussian function, it has non zero

minimum γi ą 0 in the compact U

11It is always possible to consider a Gaussian function that remains below a certain bound outside
a bounded set
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• Conclude 12 that @x P U

F pxq “

řs
i“1 CpµBi

qµAi
pxq

řs
i“1 µAi

pxq
“

řs
i“1 fpxiqµAi

pxq
řs

i“1 µAi
pxq

and then

|F pxq ´ fpxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s
ÿ

i“1
µAi

pxq rfpxiq ´ fpxqs

s
ÿ

i“1
µAi

pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s
ÿ

i“1
xPMi

µAi
pxq rfpxiq ´ fpxqs

s
ÿ

i“1
µAi

pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

1ďiďs,
xRMi

µAi
pxq rfpxiq ´ fpxqs

s
ÿ

i“1
µAi

pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ď ε `
ÿ

1ďiďs,
xRMi

ε
s
ÿ

i“1
γi

ď

ď ε `

s
ÿ

i“1

ε
s
ÿ

i“1
γi

“

“ ε

¨

˚

˚

˚

˝

1 `

s
ÿ

i“1

1
s
ÿ

i“1
γi

˛

‹

‹

‹

‚

ď εθ

with θ ą 0 is a constant.

4.3 Fuzzy relation based system
Besides those analyzed so far, other types of fuzzy systems have been shown to be
universal approximators. In the context of real-valued functions of a real variable,
an important result is due to Castro and Delgrado [CD96].
We define two sets of SISO fuzzy systems on an input universe U Ď R and output
universe R that differ in the choice of the fuzzification algorithm.
In particular, given

• a class REL of fuzzy relations on R ˆ R such that for each finite family of
squares I “ tIh “ pxh ´ δ, xh ` δq ˆ pyh ´ ε, yh ` εq : pxh, yhq P R2, h “

1, . . . , n, δ ą 0, ε ą 0u, for some n P N, there is a fuzzy relation R P REL
such that µRpx, yq ‰ 0 ðñ Dh P t1, . . . , nu : px, yq P Ih or, equivalently,
tpx, yq P R2 : µRpx, yq ‰ 0u “

Ťn
h“1 Ih

12The Proposition A.1 can be generalize to multivariate Gaussian function, the centroid of µBi

is its center fpxiq
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4 Fuzzy systems as universal approximators

• A t-norm ^ : r0, 1s ˆ r0, 1s Ñ r0, 1s

• A t-conorm _ : r0, 1s ˆ r0, 1s Ñ r0, 1s which it makes sense to consider
Ž

xPX x
where X Ď r0, 1s is infinite13.

• a defuzzification algorithm D : FpRq ˆ K Ñ R verifying the property of
producing a point in the support of the original fuzzy set, that is @B P FpRq :
µB ı 0, µBpDpB, Kqq ‰ 0

we denote by Fpoint the set of all fuzzy systems of the form:

f “ DK ˝ IK ˝ FK : U Ñ R

where
• K “ R P K “ REL is a fuzzy relation on R ˆ R
• FK : U Ñ FpUq such that @x0 P U, µFKpx0qpxq ‰ 0 ðñ x “ x0

14

• IK : FpUq Ñ FpRq is the compositional rule of inference, i.e.

@A P FpUq, IKpAq “ A ˝ R

i.e. @y P R
µA˝Rpyq “

ł

xPU

^pµApxq, µRpx, yqq

The design parameters of a fuzzy system f P Fpoint are the Knowledge base K “ R P

REL and the particular fuzzification interface (i.e. the choice of µFKpx0qpx0q @x0 P

U).
We denote by Fapprox the set of fuzzy systems having the same form as the previous
ones, with the difference that FK : U Ñ FpUq is the approximate fuzzification, that
is, given δ ą 0, @x0 P U

µFKpx0qpxq ‰ 0 ðñ x P U : |x ´ x0| ă δ

or, equivalently
@x P U, µFKpx0qpxq “ µrx0, δspxq

where µrx0, δs : R Ñ r0, 1s is a function such that µrx0, δspxq ‰ 0 ðñ |x ´ x0| ă δ.
The design parameters of a fuzzy system f P Fapprox are the Knowledge base
K “ R P REL, δ ą 0 and µrx, δs @x P U (i.e. the particular fuzzification in-
terface).

If U Ă R is a compact, then Fpoint and Fapprox are dense in CpUq with respect to
the 8-norm.
We first prove the following
Lemma 4.6. Let U Ă R be a compact, then

@g P CpUq, @ε ą 0, Df P Fapprox : @x0 P U, @y P R, µBx0
pyq|gpx0q ´ y| ď εµBx0

pyq

13An example of t-conorm with this property is the standard union t-conorm, i.e. maximum
t-conorm: if X Ď r0, 1s, even infinite, 0 ď

Ž

xPX x “ supxPX x ď 1
14Similar to point fuzzification but it is also possibile that µFK px0qpx0q ‰ 1
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4 Fuzzy systems as universal approximators

where Bx0 is the fuzzy output of f (i.e. IK ˝ FKpx0q) for the input x0. Moreover,
the membership function µBx0

is not identically zero.
Similarly,

@g P CpUq, @ε ą 0, Df P Fpoint : @x0 P U, @y P R, µBx0
pyq|gpx0q ´ y| ď εµBx0

pyq

where Bx0 is the fuzzy output of f (i.e. IK ˝ FKpx0q) for the input x0.Moreover, the
membership function µBx0

is not identically zero.

Proof. Let g P CpUq and ε ą 0: g is continuous on a compact U , then g is uniformly
continuous on U , i.e. Dδ ą 0 : @x1, x2 P U : |x1 ´ x2| ă δ, |gpx1q ´ gpx2q| ă ε.
For each x P U let consider px ´ δ, x ` δq, it is obvious that U Ď

Ť

xPU px ´ δ, x ` δq.
Since U is a compact and tpx ´ δ, x ` δquxPU is an open cover of U , it exists a finite
family of points x1, . . . , xs P U such that U Ď

Ťs
l“1pxl ´ δ, xl ` δq. From the choice

of δ, it follows that @l “ 1, . . . , s, @x P U X pxl ´ δ, xl ` δq, |gpxq ´ gpxlq| ă ε.
Let consider the finite family of squares

I “ tIl “ pxl ´ δ, xl ` δq ˆ pyl ´ ε, yl ` εq : l “ 1, . . . , su

where @l “ 1, . . . s, yl “ gpxlq.
From the hypothesis on REL, it follows that

DR P REL : µRpx, yq ‰ 0 ðñ Dl “ 1, . . . , s : px, yq P Il

or, equivalently, tpx, yq P R2 : µRpx, yq ‰ 0u “
Ťs

l“1 Il.
Let consider a f P Fapprox corresponding to the choice of R P REL and such that
@x0 P U, FKpx0q “ Ax0 : @x P U

µAx0
pxq “

#

1 |x ´ x0| ă δ

0 |x ´ x0| ě δ

Then @x0 P U the fuzzy output of f for the input x0 is Bx0 “ Ax0 ˝ R, i.e

@y P R, µBx0
pyq “

ł

xPU

^pµAx0
pxq, µRpx, yqq

µBx0
is not identically zero because @y P R 15

µBx0
pyq ě ^pµAx0

px0q, µRpx0, yqq “

“ ^p1, µRpx0, yqq “

“ µRpx0, yq

Let l “ 1, . . . , s : x0 P pxl ´ δ, xl ` δq, then @y P pyl ´ ε, yl ` εq, px0, yq P Il and
µBx0

pyq ě µRpx0, yq ą 0
Let y P R, we distinguish two cases:

• µBx0
pyq ą 0

15@x, y P r0, 1s, _px, yq ě x, y
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4 Fuzzy systems as universal approximators

In this case, 0 ă
Ž

xPU ^pµAx0
pxq, µRpx, yqq then 16 Dx1 P U : ^pµAx0

px1q, µRpx1, yqq ą

0. From the properties of a t-norm 17, it follows that µAx0
px1q ą 0 and µRpx1, yq ą 0.

In particular,
• µAx0

px1q ą 0 ùñ |x1 ´ x0| ă δ ùñ |gpx0q ´ gpx1q| ă ε
• µRpx1, yq ą 0 ùñ Dl “ 1, . . . , s : px1, yq P Il, i.e. |x1 ´ xl| ă δ and |yl ´ y| ă

ε ùñ |gpx1q ´ gpxlq| ă ε and |gpxlq ´ y| ă ε.
Then,

|gpx0q ´ y| ď |gpx0q ´ gpx1
q| ` |gpx1

q ´ gpxlq| ` |gpxlq ´ y| ď 3ε

Multiplying both sides by µBx0
pyq,

µBx0
pyq|gpx0q ´ y| ď 3εµBx0

pyq.

• µBx0
pyq “ 0

In this case, obviously µBx0
pyq|gpx0q ´ y| ď 3εµBx0

pyq since both sides are zero.
Similarly, let consider a h P Fpoint corresponding to the choice of R P REL and of
point fuzzification as fuzzification interface. Then @x0 P U the fuzzy output of h for
the input x0 is Bx0 “ Ax0 ˝ R , i.e.

µBx0
pyq “

ł

xPU

^pµAx0
pxq, µRpx, yqq

where Ax0 is the fuzzy singleton associated to x0.
µBx0

is not identically zero because @y P R

µBx0
pyq “

ł

xPU

^pµAx0
pxq, µRpx, yqq “

“ ^pµAx0
px0q, µRpx0, yqq “

“ ^p1, µRpx0, yqq “

“ µRpx0, yq

Let l “ 1, . . . , s : x0 P pxl ´ δ, xl ` δq, then @y P pyl ´ ε, yl ` εq, px0, yq P Il and
µBx0

pyq “ µRpx0, yq ą 0
Let y P R, we distinguish two cases:

• µBx0
pyq ą 0

In this case,

0 ă
ł

xPU

^pµAx0
pxq, µRpx, yqq ùñ Dx1

P U : ^pµAx0
px1

q, µRpx1, yqq ą 0 ùñ

ùñ µAx0
px1

q ą 0, µRpx1, yq ą 0
.

• µAx0
px1q ą 0 ùñ x1 “ x0

• µRpx1, yqq ą 0 ùñ Dl “ 1, . . . , s : px1, yq P Il i.e. |x1 ´ xl| ă δ and |yl ´ y| ă

ε ùñ |gpx0q ´ gpxlq| ă ε and |gpxlq ´ y| ă ε.
16_ is a t-conorm: @x P U, ^pµAx0

px1q, µRpx1, yqq “ 0 ùñ
Ž

xPU ^pµAx0
pxq, µRpx, yqq “ 0

17x “ 0 or y “ 0 ùñ ^px, yq “ 0
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Then,
|gpx0q ´ y| ď |gpx0q ´ gpxlq| ` |gpxlq ´ y| ď 2ε

Multiplying both sides by µBx0
pyq,

µBx0
pyq|gpx0q ´ y| ď 2εµBx0

pyq.

• µBx0
pyq “ 0

In this case, obviously µBx0
pyq|gpx0q ´ y| ď 2εµBx0

pyq

Now we can conclude the following
Theorem 4.7 (Castro-Delgado). Let U Ă R be a compact, Fapprox and Fpoint are
dense in CpUq with respect to 8-norm.

Proof. We want to prove that

@g P CpUq, @ε ą 0, Df P Fapprox, h P Fpoint : sup
U

|f ´ g|, sup
U

|h ´ g| ď ε

From the previous lemma, we know that

@g P CpUq, @ε ą 0, Df P Fapprox : @x0 P U, @y P R, µBx0
pyq|gpx0q ´ y| ď εµBx0

pyq

where Bx0 is the fuzzy output of f for the input x0 and µBx0
ı 0. Then @x0 P U ,

let consider y “ fpx0q “ DKpBx0q. From the hypothesis on the defuzzification, it
follows that µBx0

pfpx0qq ą 0. From

µBx0
pfpx0qq|gpx0q ´ fpx0q| ď εµBx0

pfpx0qq

dividing by µBx0
pfpx0qq, we obtain

|gpx0q ´ fpx0q| ď ε

and, then, supU |f ´ g| ď ε.
Similarly, we know that

@g P CpUq, @ε ą 0, Dh P Fpoint : @x0 P U, @y P R, µBx0
pyq|gpx0q ´ y| ď εµBx0

pyq

where Bx0 is the fuzzy output of h for the input x0 and µBx0
ı 0. Then @x0 P U , let

consider y “ hpx0q “ DKpBx0q. Again from the hypotesis on the defuzzification,it
follows that µBx0

phpx0qq ą 0. From

µBx0
phpx0qq|gpx0q ´ hpx0q| ď εµBx0

phpx0qq

dividing by µBx0
phpx0qq, we obtain

|gpx0q ´ hpx0q| ď ε

and, then, supU |h ´ g| ď ε.
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5 Neuro-Fuzzy systems

5.1 Adaptive networks
An adaptive network is a parametrized function f : Rn ˆ Rr Ñ Rm that can be
represented as a directed graph G “ pV, Eq such that for each node i P V we have
a function associated to that node fi : Rpi ˆ Rri Ñ Rqi , where pi is the dimension
of the input of fi, qi is the dimension of the output of fi and ri is the number
of parameters taken by the function fi. The graph is connected and there are n
nodes that have no incoming edges, those are called input nodes and are assigned
as an argument x of f along with its parameters P to calculate fpx, P q. Similarly
there are m nodes that have no outcoming nodes, those are called output nodes and
contain the result fpx, P q. Each directed edge from node i to node j denotes that
the output of the node i is passed as argument to the node j. The nodes that don’t
have parameters are represented with a circle while the ones that have them are
said "adaptive nodes" and are represented with squares. An adaptive network can
be changed by varying the parameters of the functions of its nodes. An example of
adaptive network is given in Figure 2, it’s also possible to specify the parameters of
an adaptive node as shown in Figure 3, in this case the functions that previously
were adaptive are now fixed and the parameters nodes are seen as adaptive nodes
that simply return the parameters themselves. So in general a "parameter node" is
a node with the identity function idRr , where s is the number of parameters.

x1

x2

x3

Input layer

f1

g1

f2

1st hidden layer

g2

f3

2nd hidden layer

y1

y2

Output layer

Figure 2: A feedforward adaptive network

x1

x2

x3

Input layer

f1

a1

g1

f2

a2

1st hidden layer

g2

f3

a3

2nd hidden layer

y1

y2

Output layer

Figure 3: A feedforward adaptive network with explicit parameters
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We classify the adaptive networks in feedforward adaptive networks if their graph
is acyclic and recurrent adaptive networks otherwise. Figure 2 is an example of
feedforward adaptive network and Figure 4 is an example of recurrent adaptive
network.

x1

x2

x3

Input layer

f1

g1

f2

1st hidden layer

g2

f3

2nd hidden layer

y1

y2

Output layer

Figure 4: A recurrent adaptive network

In Figure 2, we sorted the adaptive network graph into "layers" such that the outputs
of a layer are the inputs of the next layer,18 this is the most common graphical
representation called layered representation, but also others exist, like the topological
representation.
An adaptive network f : Rn ˆ Rr Ñ Rm can assume the form of different functions
fP : Rn Ñ Rm, where P P Rr, depending on the vector of parameters P . Given a
finite set of inputs X Ă Rn and a set of desired outputs Y Ă Rm with the same
number of elements of X, the process of tuning an adaptive network’s parameters to
get a set of parameters P ˚ such that the error measure epfP ˚pXq, Y q is minimized, or
below a certain threshold, is called learning and it is carried out with some learning
algorithms or learning rules. We will give a description of a widely known learning
algorithm for feedforward adaptive networks: the steepest descent method.

5.2 Steepest Descent Method
Let f : Rn ˆ Rr Ñ Rm be an adaptive network such that its node functions are
differentiable and P “

´

a1,1, . . . , a1,Np1q, . . . , aL,1, . . . , aL,NpLq

¯

P Rr is the vector of
parameters. We represent f in layered form with L`2 layers, where the 0-th layer is
the input layer and the pL`1q-th layer is the output layer, each layer l P t0, . . . , L`1u

has Nplq nodes, we require that NpLq “ NpL ` 1q. Let X1 “ px0,1, . . . , x0,Np0qq P

RNp0q be the vector of inputs and Y1 “ py1, . . . , yNpLqq P RNpLq the vector of desired
outputs, let xl,i P R, fl,i, al,i be respectively the output, the function and the vector
of parameters of the node i P t1, . . . , Nplqu in the layer l P t0, . . . , Lu, notice that
the output layer L ` 1 doesn’t have an output. Then the expression of any output
is

xl`1,i “ fl`1,ipxl, al`1,iq @ l P t0, . . . , L ´ 1u, i P t1, . . . , Nplqu ,

18Note that this is not a restriction on the resulting function because you can always add a
"chain of identity functions" that pass the output of a non-consecutive layer to desired layer (even
"much further" in the layer order).
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where xl “ pxl,1, . . . , xl,Nplqq. We define the error of the function fP on the input X1
as

E1 “ epxLq “

NpLq
ÿ

i“1
pyi ´ xL,iq

2

this definition is not unique and it might change depending on the context or specific
needs. We now define the error signal respect to the node i P t1, . . . , Nplqu in the
layer l P t0, . . . , Lu as

εl,i “
Be

Bxl,i

pxLq ,

then
εL,i “

Be

BxL,i

pxLq “ 2pxL,i ´ yiq .

Now notice that

epxLq “

NpLq
ÿ

i“1

`

yi ´ fL,ipxL´1, aLq
˘2

,

so the error depends not only on the last layer but also on the preceding, this
reasoning can be extended to all the layers up to the input layer. So

εL´1,i “
Be

BxL´1,i

pxLq “ ∇epxLq ¨
BfL

BxL´1,i

pxL´1q “ εL ¨
BfL

BxL´1,i

pxL´1q ,

in the same way we have @ l P t0, . . . , L ´ 1u, i P t1, . . . , Nplqu

εl,i “
Be

Bxl,i

pxLq “
Be

Bxl`1
pxLq ¨

Bfl`1

Bxl,i

pxlq “ εl`1 ¨
Bfl`1

Bxl,i

pxlq ,

Now we can calculate the derivative of the error respect to a parameter al`1,i, of
course the only part of the network that depends on that parameter is the node i in
the layer l ` 1, so xl`1,i will depend on it as well. We have, @ l P t0, . . . , L ´ 1u, i P

t1, . . . , Nplqu

Be

Bal`1,i

pxLq “
Be

Bxl`1
pxLq ¨

Bfl`1

Bal`1,i

pxlq “
Be

Bxl`1,i

pxLq
Bfl`1,i

Bal`1,i

pxlq “ εl`1,i
Bfl`1,i

Bal`1,i

pxlq ,

we denote it also as
BE1

Bal`1,i

“
Be

Bal`1,i

pxLq .

So far we considered just one input vector X1 and one desired output vector Y1, but
in order to train an adaptive network we need a dataset with multiple input-output
couples. So if we have N P N input-output couples pXi, Yiq, we define the total error
as

E “

N
ÿ

s“1
Es ,

where Es is the error on the s-th input-output couple as defined for E1. Therefore
the derivative of the total error respect to the parameter al,i is

BE

Bal,i

“

N
ÿ

s“1

BEs

Bal,i

.
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Finally we define the variation of the parameter al,i as

∆al,i “ ´η
BE

Bal,i

,

where η P R : η ą 0 is chosen, it’s called learning rate and it’s said to be an
hyperparameter of the learning algorithm.
We just gave a description of a step of the Steepest Descent Method, in fact at the
step k P N we find the parameter variation ∆a

pkq

l,i and update

a
pk`1q

l,i “ a
pkq

l,i ` ∆a
pkq

l,i .

So if P pkq “

´

a
pkq

1,1, . . . , a
pkq

1,Np1q
, . . . , a

pkq

L,1, . . . , a
pkq

L,NpLq

¯

is the vector of parameters at
the k-th iteration, we stop the algorithm when k goes over a max number K of
iterations or the total error the k-th iteration Epkq is below a threshold δ. δ and K
are hyperparameters of this learning algorithm.
Adaptive networks include some more specific function classes, for example neural
networks, we will focus on a specific class of adaptive networks that are connected
with fuzzy systems: ANFIS.

5.3 ANFIS
ANFIS, that stands for Adaptive Network-based Fuzzy Inference System or Adap-
tive Neuro-Fuzzy Inference System, is an adaptive network that is a fuzzy system
according to Definition 3.5.
We define a fuzzy system that is usually represented as an ANFIS network, we
introduce the necessary notation first.
Notation 5.1. Let U1, . . . , Un, V be universes of discourse, and let A1, . . . , An be
fuzzy sets respectively on U1, . . . , Un and let f : U1 ˆ ¨ ¨ ¨ ˆ Un Ñ V . The notation

IF x1 is A1 and ¨ ¨ ¨ and xn is An THEN z “ fpx1, . . . , xnq , (6)

stands for an implication of the form

IF x1 is A1 and ¨ ¨ ¨ and xn is An THEN z is B ,

where B is the fuzzy set given by the point fuzzification of fpx1, . . . , xnq.
Definition 5.2 (Takagi-Sugeno-Kang fuzzy systems). Let U1 Ď R, . . . , Un Ď R
universes of discourse, let U “ U1 ˆ ¨ ¨ ¨ ˆ Un, let A11, ..., A1r, . . . , An1, ..., Anr be
fuzzy sets respectively on U1, . . . , Un, let aj P Rn and bj P R for all j P t1, . . . , ru,
let K “ tAij : 1 ď i ď n, 1 ď j ď ru Y taj, bj : 1 ď j ď ru be the knowledge base.
Let the fuzzification interface FU : U Ñ FpUq be the point fuzzification on U , let
F : R Ñ FpRq be the point fuzzification in R. Let RK,j : FU pUq Ñ FpU ˆ Rq be
the j-th fuzzy rule generator, with j P t1, . . . , ru, such that

RK,jpAq “ A1j ˆ ¨ ¨ ¨ ˆ Anj ùñ F pF ´1
U pAq ¨ aj ` bjq ,

where the implication is given by the product inference rule. Let IK : FpUq Ñ FpRqr

the inference machine, such that

IKpAq “
`

A ˝ RK,1pAq, . . . , A ˝ RK,rpAq
˘

.
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Let D : FpRq Ñ R be the max defuzzification, let DK : FpRqr Ñ R be the
defuzzification interface such that

DKpC 1
1, . . . , C 1

rq “

řr
j“1 µC1

j
pDpC 1

jqqDpC 1
jq

řr
j“1 µC1

j
pDpC 1

jqq
.

Let f “ DK ˝IK ˝FK be the Takagi-Sugeno-Kang fuzzy system or TSK fuzzy system.
The TSK fuzzy system is described as a fuzzy system as per Definition 3.5, but in
literature it’s written in a simpler form. We prove it in the following.
Proposition 5.1. Let f : U Ñ R be a TSK fuzzy system with the notations in
Definition 5.2. Then, for each x P U

fpxq “

řr
j“1 wjzj
řr

j“1 wj

,

where for each j P t1, . . . , ru

wj “
ľ

1ďiďn

µAij
pxiq

and zj “ x ¨ aj ` bj.
Remark 5.1. The t-norm ^, needs to be specified, usually it is the minimum operator.
Proof. Let x P U , let A “ FU pxq be the fuzzy set resulting of the point fuzzification
of x. Let j P t1, . . . , ru, let

Cj “ F pF ´1
U pAq ¨ aj ` bjq “ F px ¨ aj ` bjq ,

that is the point fuzzification of x ¨ aj ` bj, this also implies that a TSK uses rules
of the form Equation 6. Whatever are the chosen norm ^ and conorm _, let

µRj
pu, zq “ µA1jˆ¨¨¨ˆAnj

puq µCj
pzq “

ľ

1ďiďn

µAij
puiq ¨ µCj

pzq ,

in particular,
µRj

px, zq “
ľ

1ďiďn

µAij
pxiq ¨ µCj

pzq “ wjµCj
pzq ,

then

µA˝RK,jpAqpzq “
ł

uPU

^pµApuq, µRj
pu, zqq “ ^pµApxq, µRj

px, zqq “ µRj
px, zq “ wj µCj

pzq .

So

µC1
j
pzq “ µA˝RK,jpAqpzq “

#

wj if z “ zj

0 if z ‰ zj

and if wj ‰ 0 the max defuzzification DpC 1
jq “ zj is well defined, otherwise we don’t

calculate it because in the final sum it doesn’t appear. Finally

fpxq “

řr
j“1 µC1

j
pDpC 1

jqqDpC 1
jq

řr
j“1 µC1

j
pDpC 1

jqq
“

řr
j“1 µC1

j
pzjqzj

řr
j“1 µC1

j
pzjq

“

řr
j“1 wjzj
řr

j“1 wj

.

The only remaining problem is if all the wj “ 0, this is generally not specified in
the TSK fuzzy system, but it can be solved assuming, for example, that, for each
1 ď i ď n, Ai1, . . . , Air have supports that cover the entire Ui.
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6 Conclusion

We can represent a TSK fuzzy system as an ANFIS network as in Figure 5. Where

Njpw1, . . . , wrq “
wj

řr
j“1 wj

“ wj @ j P t1, . . . , ru

and
zjpx1, . . . , xn, wjq “ wjpx ¨ aj ` bjq ,

that has aj and bj as parameters.

Input layer

x1

x2

1st hidden layer

idU1

idU2

µA11

µA12

µA13

µA21

µA22

µA23

2nd hidden layer

idU1

idU2

^1

^2

^3

3rd hidden layer

idU1

idU2

N1

N2

N3

4th hidden layer

z1

z2

z3

5th hidden layer

ř

Output layer

z

Figure 5: A TSK fuzzy system with 2 inputs and 3 rules represented as an ANFIS
network

It’s possible to train an ANFIS network as we did in subsection 5.2, but there are
other learning algorithms that are more performant.

6 Conclusion
Our work aims to give a rigorous introduction to the fuzzy sets and fuzzy logic
theories and to provide an overview of ANFIS networks, we proposed a definition
of fuzzy system in Definition 3.5 and expanded known results as in Theorem 4.3,
Theorem 4.5 and Theorem 4.7.
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A.1 Gaussian functions
Proposition A.1. Let ϕ : R Ñ R be a Gaussian function, i.e

ϕpzq “ αexp

ˆ

´
1
2

´z ´ µ

σ

¯2˙

with α, σ P R ´ t0u and µ P R, then

µ “

ż

R
z ϕpzq dz

ż

R
ϕpzq dz

Proof. Recall that @α, µ P R, σ P R ´ t0u,
ż

R
αexp

ˆ

´
1
2

´z ´ µ

σ

¯2˙

dz “ ασ
?

2π.

It follows that
ż

R
z ϕpzq dz “ ´σ2

ż

R
´

z ´ µ ` µ

σ2 αexp

ˆ

´
1
2

´z ´ µ

σ

¯2˙

dz “

“ ´σ2
ż

R
´

z ´ µ

σ2 αexp

ˆ

´
1
2

´z ´ µ

σ

¯2˙

dz ` σ2
ż

R

µ

σ2 αexp

ˆ

´
1
2

´z ´ µ

σ

¯2˙

dz “

“ ´σ2
ż

R

d

dz
αexp

ˆ

´
1
2

´z ´ µ

σ

¯2˙

dz ` σ2 µ

σ2

ż

R
αexp

ˆ

´
1
2

´z ´ µ

σ

¯2˙

dz “

“ ´σ2
„

αexp

ˆ

´
1
2

´z ´ µ

σ

¯2˙ȷ`8

´8

` σ2 µ

σ2 ασ
?

2π “ µασ
?

2π

and if α, σ ‰ 0
ż

R
z ϕpzq dz

ż

R
ϕpzq dz

“
µασ

?
2π

ασ
?

2π
“ µ

Proposition A.2. Let ϕ1, ϕ2 be two Gaussian functions, then ϕ1ϕ2 is also a Gaus-
sian function.

Proof. Let

ϕ1pxq “ α1exp

˜

´
1
2

ˆ

x ´ µ1

σ1

˙2
¸

,

ϕ2pxq “ α2exp

˜

´
1
2

ˆ

x ´ µ2

σ2

˙2
¸

,
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with α1, α2, σ1, σ2 P R ´ t0u and µ1, µ2 P R, then

ϕ1ϕ2pxq “ α1α2exp

˜

´
1
2

ˆ

x ´ µ1

σ1

˙2
¸

exp

˜

´
1
2

ˆ

x ´ µ2

σ2

˙2
¸

“

“ α1α2exp

˜

´
1
2

«

ˆ

x ´ µ1

σ1

˙2

`

ˆ

x ´ µ2

σ2

˙2
ff¸

“

“ α1α2exp

ˆ

´
1
2

„ˆ

x2 ´ 2xµ1 ` µ2
1

σ2
1

˙

`

ˆ

x2 ´ 2xµ2 ` µ2
2

σ2
2

˙ȷ˙

“

“ α1α2exp

ˆ

´
1
2

„

x2
ˆ

1
σ2

1
`

1
σ2

2

˙

´ 2x

ˆ

µ1

σ2
1

`
µ2

σ2
2

˙

`

ˆ

µ2
1

σ2
1

`
µ2

2
σ2

2

˙ȷ˙

,

by setting 1
σ2 “ 1

σ2
1

` 1
σ2

2

ϕ1ϕ2pxq “ α1α2exp

ˆ

´
1
2

1
σ2

„

x2
´ 2xσ2

ˆ

µ1

σ2
1

`
µ2

σ2
2

˙

` σ2
ˆ

µ2
1

σ2
1

`
µ2

2
σ2

2

˙ȷ˙

“

“ α1α2exp

˜

´
1
2

1
σ2

«

x2
´ 2xσ2

ˆ

µ1

σ2
1

`
µ2

σ2
2

˙

`

ˆ

σ2
ˆ

µ1

σ2
1

`
µ2

σ2
2

˙˙2

´

´

ˆ

σ2
ˆ

µ1

σ2
1

`
µ2

σ2
2

˙˙2

` σ2
ˆ

µ2
1

σ2
1

`
µ2

2
σ2

2

˙

ff¸

“

“ α1α2exp

˜

´
1
2

1
σ2

«

ˆ

x ´ σ2
ˆ

µ1

σ2
1

`
µ2

σ2
2

˙˙2

´

ˆ

σ2
ˆ

µ1

σ2
1

`
µ2

σ2
2

˙˙2

` σ2
ˆ

µ2
1

σ2
1

`
µ2

2
σ2

2

˙

ff¸

“

“ α1α2exp

¨

˚

˝

´
1
2

¨

˝

x ´ σ2
´

µ1
σ2

1
`

µ2
σ2

2

¯

σ

˛

‚

2˛

‹

‚

exp

˜

´
1
2

1
σ2

«

´

ˆ

σ2
ˆ

µ1

σ2
1

`
µ2

σ2
2

˙˙2

` σ2
ˆ

µ2
1

σ2
1

`
µ2

2
σ2

2

˙

ff¸

.

If β “ exp

ˆ

´1
2

1
σ2

„

´

´

σ2
´

µ1
σ2

1
`

µ2
σ2

2

¯¯2
` σ2

´

µ2
1

σ2
1

`
µ2

2
σ2

2

¯

˙ȷ

and µ “ σ2
´

µ1
σ2

1
`

µ2
σ2

2

¯

, we
have

ϕ1ϕ2pxq “ βα1α2exp

ˆ

´
1
2

´x ´ µ

σ

¯2˙

.

A.2 Fuzzy Logic
Definition A.1 (Fuzzy system). Let U Ď Rn be the input universe and V Ď Rm

the output universe. Let r1, r2, r3, r4 P N0, let

K “ Rr1 ˆ FpUq
r2 ˆ FpV q

r3 ˆ FpU ˆ V q
r4 ,

and let

KF “ Rr1 ˆ FpUq
r2 , KI “ Rr1 ˆ FpU ˆ V q

r4 , KD “ Rr1 ˆ FpV q
r3
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Let F : U ˆ KF Ñ FpUq be the fuzzification algorithm, I : FpUq ˆ KI Ñ FpV qq

be the fuzzy inference algorithm and D : FpV qq ˆ KD Ñ V be the defuzzification
algorithm. Moreover

IpA, Kq “ pA ˝ R1pA, Kq, . . . , A ˝ RqpA, Kqq @ A P FpUq @ K P KI ,

where R : FpUq ˆ KI Ñ FpU ˆ V qq is the fuzzy rules generation algorithm, for each
i P t1, . . . , qu Ri : FpUqˆKI Ñ FpU ˆV q is the i-th fuzzy rule generation algorithm
and ˝ is a synthetic operation. Let RK “ Rp¨, Kq be the fuzzy rules generator and
let RK,i “ Rip¨, Kq be the i-th fuzzy rule generator.
Let K P K be the Knowledge Base, let KF , KI , KD the components of K such that
they belong respectively to KF , KI , KD. Let FK “ F p¨, KF q be the fuzzification
interface, or fuzzification, let IK “ Ip¨, KIq be the fuzzy inference machine, or fuzzy
inference, and let DK “ Dp¨, KDq be the defuzzification interface, or defuzzification.
Let f “ DK ˝IK ˝FK : U Ñ V , then we say that f is a fuzzy system with Knowledge
Base K or simply a fuzzy system.
If m “ 1 we call f a MISO (Multiple Inputs Single Output) fuzzy system.
If n, m “ 1 we call f a SISO (Single Input Single Output) fuzzy system.
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