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Abstract

We give the mathematical foundations of Fuzzy Set Theory and Fuzzy Logic, we
present some prominent theoretical achievements of Fuzzy Systems Theory, finally

we give a description of ANFIS.
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2 Fuzzy set theory

1 Introduction

Fuzzy Logic is a generalization of classic Logic, embracing the concept of "vagueness"
in its theory and being able to deal with statements that are not tractable within
classic Logic. Fuzzy Logic can classify statements not only as "true" or "false' as in
ordinary Logic, but it’s possible to assign a numeric value representing the "degree of
truth" of the statement. Moreover Fuzzy Logic is not a branch a Probability Theory
and the converse is also true, because Probability Theory deals with "uncertainty".
We provide some examples to illustrate the differences.

My dice roll will be 5.
This expression represents an outcome of a dice roll, it is easily evaluated in Prob-
ability Theory, since we know that this outcome has a probability of %, because a
dice has 6 faces. It cannot be evaluated by the means of classic Logic, because that
expression is not simply true or false; the same holds for the Fuzzy Logic since it’s
not possible to say if this expression is "partially true"'. The expression is not vague
since we know exactly the possible outcomes (1,2, 3,4, 5, 6) but we don’t know which
is the final outcome until the dice is tossed, so we can’t comment on the "truth" of
the expression.

The temperature outside is more than 25°C.
This expression is clearly not vague and there is no uncertainty, meaning that,
assuming that you have a thermometer, you can say if this statement is true or
false. So this expression can be considered both in classic Logic and in Fuzzy Logic,
it doesn’t make sense to evaluate it in Probability Theory.!

The temperature outside is high.
This expression again is meaningless in the context of Probability, and it is not in-
terpretable in the context of classic Logic (the adjective "high" is vague), while in the
context of Fuzzy Logic it’s possible to assign a value to this expression representing
its level of "truth".

2 Fuzzy set theory

In this section, we will provide an overview of the basic notions of fuzzy set theory,
which is a natural extension of classical set theory.

In classical set theory, the fundamental concept is the "set", which is one of the
primitive notions, i.e. it doesn’t have a definition but is most frequently understood
as a collection of objects (elements) having some features distinguishing them from
other objects. In the case of classical sets, any element is either a member or not a
member of the set, that is, a given object x may belong to a set A (be a member of a
set A), or not belong to this set (not be a member of this set). This two possibilities
are denoted by x € A or x ¢ A.

Human perception, logical thinking and reasoning decisions cannot be modeled using
classical set theory, since, in everyday life, people deal with vague concepts that have

Tt’s possible to say that there is a 100% or 0% probability that the temperature outside is
more than 25°C, depending on the case, that makes the matter trivial in the context of Probability
Theory.
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a rich connotation without an absolute standard of measurement and, as a result,
often reflect personal and subjective judgments.

For example, the property of being exactly 35 years old defines a classical set because
it divides the universe of individuals into two well-defined and mutually exclusive
groups: those who are 35 years old and those who are not.

However, people commonly deal with the concepts of young, old, or middle-aged
which are vague and each person does not have the same understanding of these
concepts. Moreover, being young (equivalently old) does not define a property that
allows a clear and precise distinction among individuals because a person may be
considered neither clearly young nor clearly not young. This means that the property
of being young does not define a classical set because, in the classical set theory, an
element is either entirely in the set or entirely outside of it, there is no ambiguity or
partial membership.

On the contrary, fuzzy set theory accepts partial memberships and, therefore, in a
sense is a method for rigorously modeling the vagueness and subjectivity in human
perception and reasoning, thus breaking away from the deterministic belong-or-
don’t-belong relationship that characterizes classical set theory. To achieve this,
Zadeh proposed the use of membership functions to describe a fuzzy set, that is, an
object x may belong to a fuzzy set A with varying membership degrees in the range
[0, 1], where 0 and 1 denote, respectively, lack of membership and full membership.

2.1 Fuzzy sets
Definition 2.1 (Fuzzy set). Let u: U — [0, 1] and let

A={(z,u(z)) :zeU}.

We say that A is a fuzzy set of U and p is the membership function of A. We call
U the universe set, universe of discourse or, simply, universe.

Remark 2.1. We defined a fuzzy set from a function with domain U and range [0, 1],
but it’s trivial to get a function of that kind from A, moreover that function is
clearly unique, hence we can talk about a fuzzy set and its membership function
interchangeably. We usually denote the membership function of a fuzzy set A as

fia-
We can easily identify a classical set A < U with the fuzzy set

A* = {(z,xa(z)) ;2 €U},

where Y4 is the characteristic function of A and it’s defined as

0, z¢ A
= v U.
Xa(®) {1, reA ve

Essentially we can identify each subset A of U as a fuzzy set of U with membership
function y 4.

We can imagine the membership function of a fuzzy set as a way to represent "how
much an element belongs to a set'. For instance we can define the set of "high
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temperatures', as the fuzzy set A of R with membership function
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In this example we are considering temperatures over 50°C' as being high, the tem-
peratures below 0 as not being high and the temperatures in the middle as being
"partially high", for example 25°C' is 50% high, it belongs to the set of the high tem-
peratures at 50%. Of course the choice of the membership function was arbitrary in
this case, but it can be done using expert knowledge or surveys, for example.
Notation 2.2 (Zadeh’s representation of a membership function). Let p : U —
[0, 1], we represent u using the following notation:

o)

If U = {uy,}nen, we can use this notation:

:iu(U)

If U = {uq,...,u,}, we can use this notation:

“:ZMSQ _ MEZl) T M(uun)

=1

If U < R, for each p(u;) = 0, you can omit the term * ‘(“1) in the sum.

These notations are referred to as Zadeh’s representatzon as given in [ZZW23, Def.
3.2].

Notation 2.3 (Vector representation of a fuzzy set). If U = {uy,...,u,} is a finite
set and A is a fuzzy set of U with membership function u, then we can represent A
as follows

A = [p(ur) - plug)] -

2.2 Fuzzy set operations

In this section, we use the definitions and notations as in [Pro+17].

The fuzzy set operations are defined with respect to the sets’ membership functions.
Definition 2.4 (Inclusion relation of fuzzy sets). Let A and B be two fuzzy sets of
universe U. A is a subset of B, denoted as A < B, if

Vo e U, pa(z) < pp(x)

Definition 2.5 (Equality relation of fuzzy sets). Let A and B be two fuzzy sets of
universe U. A and B are equal if

Vo e U, pa(r) = pp()
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Definition 2.6 (Complement of a fuzzy set). Let A be a fuzzy set of universe U.
The fuzzy set A’ defined as

Ve e U, pa(x) =1— pa(z)

is called the complement of A.
In order to define union and intersection of two fuzzy sets, we need to define the
t-norm and t-conorm.
Definition 2.7 (Triangular norm). A Triangular norm or t-norm is a mapping
T :[0,1] x [0,1] — [0, 1] with the following four properties.

o Commutativity: T'(z,y) = T(y, )

o Monotonicity: T(z1,y1) < T(x2,y2) , if x1 < x9 and y; < yo

o Associativity: T(x,T(y, 2)) = T(T(z,y), )

e Linearity: T(z,1) = x
Notation 2.8. A triangular norm can also be denoted with the symbol A, i.e.
T(x,y) = x A y are equivalent notations.
Definition 2.9 (Triangular conorm). A Triangular conorm or t-conorm or s-norm
is a mapping C' : [0, 1] x [0,1] — [0, 1] with the following four properties.

o Commutativity: C(z,y) = C(y,x)

e Monotonicity: C(z1,y1) < C(xa,y2) , if 1 < 29 and y; < o

 Associativity: C(z,C(y,z)) = C(C(x,y), 2)

e Linearity: C(z,0) =z
Notation 2.10. A triangular conorm can also be denoted with the symbol v, i.e.
C(z,y) = = v y are equivalent notations.
There exist various t-norms and t-conorms.
The most common t-norms are:

e standard intersection or minimum t-norm: T(x,y) = min(z, y)

e algebraic product: T(x,y) = xy.
Similarly, the most common t-conorms are

o standard union or mazimum t-conorm: C(z,y) = max(z,y)

e algebraic sum or probabilistic sum: C(z,y) = x +y — xy.
In general, the union of two fuzzy sets is described by t-conorms, whereas their
intersection is described by t-norms.
Definition 2.11 (Union and intersection of fuzzy sets). Let A and B fuzzy sets of
universe U. The union of A and B is the fuzzy set A U B:

Vo e U, paup(@) = Clpa(z), pp(x)) = pa(z) v pp(@)

where C': [0,1] x [0,1] — [0, 1] is a t-conorm.
Using the standard union or the algebraic sum, we have respectively:

Vz € U7 :uAuB(x) = max(uA(ac), :U’B(x))
called mazimal operator of fuzzy sets and

Vo € U, paop(x) = pa(r) + pp(z) — pa(z)pus(z)
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called sum operator of fuzzy sets.
The intersection of A and B is the fuzzy set A n B:

Vo e U, panp(x) = T(pa(x), pp(@)) = pa(@) A pp(z)

where T : [0,1] x [0,1] — [0,1] is a t-norm.
Using the standard intersection or algebraic product, we have respectively:

Vo € U, pianp(x) = min(ua(z), pp(x))

called minimum operator of fuzzy sets and

Vo € U, pianp(x) = pa(z)pp(x)

called product operator of fuzzy sets.
Remark 2.2. We can see that the fuzzy set operations defined above are extensions
of the classical set operations. Let us consider two crisp sets A and B of a universe
U. In the classical set theory, we give the following definitions:
o the complement of A is the subset A¢ consisting of the elements of U that do
not belong to A;
o the union of A and B is the subset A U B consisting of the elements that
belong to at least one of A or B.
o the intersection of A and B is the subset A n B consisting of the elements that
belong to both A and B
Furthermore, the following relations hold between the characteristic functions:
o Xae =1—xu;
* XAuB = X4+ XB — XaXB = max(Xa, XB)-

* XAnB = XAXB = min(xa, xB)
However, as mentioned earlier, every crisp subset of U can be identified with a fuzzy

set of U by defining its membership function as its characteristic function. As a
consequence:

o the fuzzy complement of A is {(x, X Ac (;1:)) (X E U}

o the fuzzy union of A and B is {(x,XAug(x)) ‘T € U}

o the fuzzy intersection of A and B is {(x, XAQB(I)) A= U}
Definition 2.12 (Cartesian Product of fuzzy sets). Let A;, ..., A, be fuzzy sets of
Ui, ..., U, respectively. A fuzzy set I’ of Uy x --- x U, of the form

pp(xy, oo ) = pa, (@) Ao A pia, (), V(xq, ... 2,) €U x - x U,

where A in a t-norm, is called cartesian product of Ai,..., A, and is denoted by
F=A x---xA,.

Definition 2.13 (Inner product of fuzzy sets). Let A and B fuzzy sets of universe
U. The inner product of A and B is

Ao B =\/(na() A us(c)).

zelU

where A and v are respectively a t-norm and an s-norm.
Remark 2.3. The inner product of A and B is a scalar; specifically, Ao B € [0, 1].
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2.3 Fuzzy relations

Definition 2.14 (Fuzzy relation). Let U and V be two universe sets, i.e. two
non-empty sets. A fuzzy set

R = {((az,y),,uR(x,y)) S (x,y) e U x V}

of the cartesian product U x V' is called fuzzy relation on U x V or binary fuzzy
relation from U to V or fuzzy relation for short.

The membership function pug : U x V' — [0, 1] associates to each pair (z,y) e U x V
the degree of relationship between x and y.

Similar to the binary fuzzy relation, we can define a multidimensional fuzzy relation
as

R = {((:Ul,...,$n),,uR(a:1,...,$n)) (1, x,) €U X o0 % Un}

where pug : Uy x -+ x U, — [0,1] is a membership function of an n-dimensional
fuzzy set defined in universe Uy x --- x U,.

Notation 2.15. Suppose U = {z1,...,2,} and V = {y1,...,y,} are finite sets, a
fuzzy relation R can be represented by a matrix

MR(%,%) NR(xlay2> o uR(T1, Ym)
R MR(@; 3/1) MR($27 yz) T MR(%;ym)
LR(Tn, Y1) HR(Tn,Y2) -0 UR(Tn, Ym)

Definition 2.16 (Fuzzy relation on fuzzy sets). Let A and B be fuzzy sets of U
and V', respectively. A fuzzy relation on A and B is a fuzzy set

R = {(('rvy)nuR@j?y)) : (l’,y) eU x V}

such that V (z,y) € U x V, pr(z,y) < min(pa(z), ps(y))-

2.4 Compositions with binary fuzzy relations

Because fuzzy relations are fuzzy sets, they are subject to the same operations as
fuzzy sets. Additionally, binary fuzzy relations in different product spaces may
be composed. This operation of composition is also called synthetic operation. In
general, we can define this operation as follows.

Definition 2.17 (Synthetic operation). Let U, V and W be 3 universe sets and
let R and S be binary fuzzy relations on U x V and on V' x W, respectively. The
composition, synthesis or synthetic operation, of R and S, is the binary relation on
UxW:

T=RoS.

Meaning

V(xz,2) e U x W, pr(x,z) = \/,uR(x,y) A ps(y, z).

yeV
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Different versions of the composition have been proposed, depending on the choice of
the operators A and v. Frequently used compositions are the so-called supremum-
t-norm composition, i.e

V(z,2) e U x W,ur(x,z) = 3161‘1/) pr(x,y) A ps(y, 2)
y

where A :[0,1] x [0,1] — [0, 1] denotes a t-norm.

o if A is the standard intersection t-norm (i.e. minimum t-norm), the composi-

tion is called max-min composition

o if A is the product t-norm , the composition is called maz-prod composition.
Remark 2.4. For relations described by relation matrices, the above compositions can
be achieved by multiplication of matrices with multiplication of elements replaced
by t-norm and the adding of elements replaced by s-norm.
Definition 2.18 (Zadeh’s compositional rule). Let R and A be, respectively, a fuzzy
relation on U x V and a fuzzy set of U. The composition

B=AoR

is called the conclusion made from the fact A based on the rule R .
Remark 2.5. B = Ao R is the synthetic operation and means that

VyeV,up(y \/MA ) A br(T,Y)
zelU

3 Fuzzy systems

This section describes the basic concepts of fuzzy systems.

In simple terms, a fuzzy system is a computing framework based on the concepts of
fuzzy set theory, fuzzy conditional rules and fuzzy reasoning [Alo+21].

In the following, we first formally define a fuzzy system, and then we provide an
interpretation of these concepts that will make clear why fuzzy systems can "simulate
human thinking procedure".

3.1 Fuzzy conditional rule and Fuzzy inference

Definition 3.1 (Implication Operator). An implication operator is a function

¢:[0,1] x [0,1] — [0, 1]

which is a t-norm or has the following properties:

e ¢ is continuous
Va,b,ce0,1]:a < c, ¢(a,b)
Va,b,ce|0,1]: b<c o(a,b)
Vbe[0,1],6(0,b) =

e Yae|0,1],¢(a,1) =

e« $(1,0) =0
If ¢ is a t-norm we say that ¢ is a conjunctive implication operator; otherwise, we
speak of logical implication operator.

¢(c, b)
¢(a,c)

N WV
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Various implication operators have been defined. For example,
o the standard intersection (minimum) t-norm ¢(x,y) = min(x,y) is the mini-
mum (Mamdani) implication operator
o ¢(z,y) = max(l — z,min(z,y)) is the Farly Zadeh implication operator or
max-min implication operator
o ¢(x,y) =min(l,1 — z + y) is the Lukasiewicz implication operator.
Definition 3.2 (Fuzzy conditional rule). Let A and B be fuzzy sets of U and V,
respectively. A fuzzy conditional rule (fuzzy implication or fuzzy IF-THEN rule) is
a fuzzy relation R on U x V of the form

pr(x,y) = ¢(pa(z), np(y))

where ¢ is an implication operator. In this case, R is denoted by
A= B

and A is called antecedent (premise), whereas B is called consequent (conclusion).
A MISO (Multiple Inputs Single Output) fuzzy conditional rule with conjunctive
antecedent (or canonical fuzzy if-then rule) is a fuzzy implication of the form

A1XA2X---><AN — B

where the antecedent A € F(U; x --- x U,) is a cartesian product of fuzzy sets
A; € F(U;).

Similarly, a MISO fuzzy conditional rule with disjunctive antecedent is a fuzzy im-
plication where the antecedent is a fuzzy set A of a universe U = U; x - - - x U,, such
that

MA(xla SR ,Jl'n) = MAl(‘Q:l) VoV /,LAn(fﬂn>

where Vi = 1,...,n, A; is a fuzzy set of universe U; and v is a t-conorm.

Remark 3.1. In the context of fuzzy systems, we use only canonical fuzzy if-then
rules. For this reason, for brevity, we will refer to this type simply as fuzzy condi-
tional rule/implication/if-then rule, etc.

Remark 3.2. The values pa(x), up(y) and pr(z,y) can be interpreted respectively
as a truth degree of the antecedent in x, a truth degree of the consequent in y and a
truth degree of the implication in (z,y). In this sense, a logical implication operator,
thanks to the properties ¢(0,b) = 1, ¢(a,1) = 1, ¢(1,0) = 0, generalizes the truth
table of the implication operator in Boolean logic, that is

HA HUB | HA=— B
0 O 1
0 1 1
1 0 0
1 1 1
r oy | o(x,y)

However, this doesn’t hold in general; for example, it doesn’t hold for the minimum
implication operator (min(0,0) = 0 # 1). So, in general, a fuzzy implication is not
simply a generalization of classical logic implication.
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Definition 3.3 (Powerfuzzyset). Let U be the universe of discourse, we denote the
set of the fuzzy sets of U as F(U), formally

FU) = {{(z,p(@)) |z €U} | p: U —[0,1]}.

In the fuzzy systems literature ([TRK15], [ZZW23], [Pro+17], [Alo+21], [Jan+97])
it’s quite common to define fuzzy sets verbally, we try to give a description in
mathematical terms.

Definition 3.4 (Fuzzy system). Let U < R" be the input universe and V"< R™
the output universe. Let ri,7r9, 73,74 € Ny and let

K=R"x FU)? xF(V)? x FUx V).

Let F: U x K — F(U)P be the fuzzification algorithm, I : F(U)? x K — F(V )4
be the fuzzy inference algorithm and D : F(V)? x K — V be the defuzzification
algorithm.

Let K € K be the Knowledge Base, let Fix = F(-, K) be the fuzzification interface,
or fuzzification, let I = I(-, K) be the fuzzy inference machine, or fuzzy inference,
and let Dg = D(-, K) be the defuzzification interface, or defuzzification. Let f =
DgolgoFg:U — V, then we say that f is a fuzzy system with Knowledge Base
K or simply a fuzzy system.

If m =1 we call fa MISO (Multiple Inputs Single Output) fuzzy system.

If n,m =1 we call fa SISO (Single Input Single Output) fuzzy system.

Fuzzy System

————————————————————————————————————————————————

Knowledge
Base

[CriSp input]—% Fuzzification —| Fuzzy Inference —— Defuzzification

Figure 1: Fuzzy System processing input

In Figure 1 is represented a general fuzzy system.?
This definition is problematic because it is possible to prove that any function f :
UcR"— V < R™is a fuzzy system, hence the definition is "too general". In fact,
let Fiy : U — F(U) and Fy : V — F(V) be respectively the point fuzzification of U
and V', we choose

1. The fuzzification interface F = Fy;

2. The fuzzy inference machine I = Fy o f o F;*

3. As defuzzification interface D = Fy,*
notice that none of them depend on any knowledge base. We get that f = DoloF,
so f is a fuzzy system according to this definition.
For this purpose we provide a more specific definition that still includes all the fuzzy
systems we consider.

2Where "crisp" is used as "non-fuzzy"
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Definition 3.5 (Fuzzy system). Let U < R™ be the input universe and V< R™
the output universe. Let ry,re, 73,74 € Ng and let

K =R x F(U) x F(V)* x F(U x V).

Let F': U x K — F(U) be the fuzzification algorithm, I : F(U) x K — F(V) be the
fuzzy inference algorithm and D : F(V)? x KL — V be the defuzzification algorithm.
Let K € K be the Knowledge Base, let Fix = F(-, K) be the fuzzification interface,
or fuzzification, let I = I(-, K) be the fuzzy inference machine, or fuzzy inference,
and let Dg = D(-, K) be the defuzzification interface, or defuzzification. Moreover

I(A,K) = (Ao Ri(A,K),..., Ao R,(A,K)) YAe F{U)VK ek,

where R : F(U) x K — F(U x V)7 is the fuzzy rules generation algorithm, for each
ie{l,....q} Ri: F(U) x K — F(U x V) is the i-th fuzzy rule generation algorithm
and o is a synthetic operation. Let Rx = R(-, K) be the fuzzy rules generator and
let Ri; = Ri(-, K) be the i-th fuzzy rule generator.

Let f = DgolgoFyk : U — V, then we say that f is a fuzzy system with Knowledge
Base K or simply a fuzzy system.

If m =1 we call fa MISO (Multiple Inputs Single Output) fuzzy system.

If n,m =1 we call fa SISO (Single Input Single Output) fuzzy system.

If you want an even more specific definition check Definition A.1.

The are various fuzzification, fuzzy inference and defuzzification algorithms and
different choices lead to different types of fuzzy systems.

Definition 3.6 (Point fuzzification). Let U be the universe of discourse, let K be a
knowledge base, we define the point fuzzification algorithm F : U — F(U), so that

F(z,K)=Fg(x)=A, VYVKeK,

where A, is the fuzzy set such that p14, = x(ay.

3.2 Linguistic variables

At this point, we aim to provide an interpretation of the concepts defined so far
to make clear why the theories of fuzzy sets, fuzzy logic and fuzzy systems provide
a formal mathematical representation of human knowledge, reasoning and decision
making about complex problems. In fact, humans are able to control many processes
without requiring precise or complete knowledge of the problem or system. Instead,
they rely on a form of knowledge often empirical expressed through imprecise natural
language terms and conditional rules. A classic example can be found in how a
person regulates the temperature of a room. Consider a person entering a room and
feeling that it is "a bit cold." Without any precise knowledge about heat exchange
or ambient conditions, they might slightly turn up the heater. Later, if the room
feels "too warm," they might reduce the heating. These decisions are not based
on equations or measurements, but rather on subjective linguistic terms like "cold,"
"comfortable," or "hot" and still lead to satisfactory temperature regulation.

We can say humans reason in terms of linguistic variables that, informally speaking,
are variables whose values are not numbers, but rather words in natural language
and can be formally defined in the context of fuzzy set theory as follows:

10
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Definition 3.7 (Linguistic variable). A linguistic variable is a quintuple
z = (N,U,L,G, M)

where:
e N is the name of the variable x,
e U is the universe of discourse, i.e. a crisp or classical set,
o L is the set of linguistic values (terms) of = being a collection of labels for a
family of fuzzy sets of U
o ( is the set of syntactic rules defined by grammar determing all terms in L,
e M is a semantic rule that defines the meaning of all labels in L, i.e. assigns
to each linguistic value in L a fuzzy set of U, i.e. we can see M as a function
M:L— FU)
Referring back to the initial example, we can consider temperature as name of a
linguistic variable, whose values might include cold, warm, and hot, each interpreted
as fuzzy sets over the universe of real numbers representing degrees.
Humans use linguistic variable in propositions expressed in natural language, for
example "the temperature is high". These propositions are represented in fuzzy set
theory as linguistic statement.
Definition 3.8 (Elementary linguistic statement). Let z = (N, U, L,G, M) a lin-
guistic variable. An elementary linguistic statement or elementary fuzzy expression
for x is an expression of the form
xis A
where A = M(l), | € L is a fuzzy set of U labeled by [. This elementary statement
should be read as: "N s [".
For example, let = be a linguistic variable with name N = "temperature' and A =
M (hot), then the statement x is A should be read "temperature is hot'".
A more complex fuzzy expression can be obtained by combining two or more ele-
mentary expressions. It can be presented in the conjunctive form:
r1 is Ay and x4 is Ay
or disjunctive form:
x1is Ay or x4 is As
or implication (or IF-THEN) form
if 1 is A; then x4 is A,
where x; and x5 are linguistic variables, A; and A, are fuzzy sets in their respective
universe. We can generalize from two to an arbitrary number of linguistic variables,
combine these forms and obtain, for example:
if x1 is Ay and x5 is Ay and --- and =z, is A, then y is B.
If the fuzzy sets A4, ..., A,, B are associated to linguistic values respectively [y, ..., [,
the expression can be read as
If NViisly and ... and N,, is [,, then N is [
where Ny,...,N,, N are the name respectively of x1,...,x,,y.
For example, if N7 is temperature, Ny is humidity, IV is speed, [; is "hot", [ is "dry"
and [ is "fast", we can have read it like this:
If temperature is hot and humidity is dry then speed is fast

11
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In practical applications, fuzzy expressions are always represented as fuzzy sets.
For example, conjunctive forms are modeled as the Cartesian product of fuzzy sets,
while IF-THEN forms are expressed as fuzzy implications 3.

We will also use the following

Notation 3.9. Let Uy,...,U,,V be universes of discourse, and let A;,..., A,, B

be fuzzy sets respectively on Uy, ..., U,, V. The notation
IF z;is Ay and --- and =z, is A, THEN z is B, (1)
stands for a fuzzy implication of the form
Ay x -+ x A, = B.

This notation allow us to link the intuitive human thinking process, expressed in
the form of words, and fuzzy logic. This is what makes fuzzy systems "explainable"
compared to other mathematical tools used in the applications.

We will make an analogy with the human brain, to give a better understanding of
such design.

We have

1. The crisp input is an element xy € U. It represents a measurement of some
physical quantity, for example the brightness of a color or the temperature of
an object.

2. The Knowledge Base is made up of fuzzy sets (in particular there can be fuzzy
relations and fuzzy implications) and real numbers, they are used as "pa-
rameters' of the fuzzification, fuzzy inference and defuzzification algorithms.
Intuitively, it is a set of information in all the phases of the "thought', for a
human it can be thought as its experience and knowledge.

3. The Fuzzification Interface takes as input zp and, Fi (x¢) returns a fuzzy set A’
This is similar to a human evaluation of the outer world through its senses,
humans get crisp inputs from the surrounding world by our sensory organs
and they get "interpreted" by our brain as sensations. Generally speaking
something can be interpreted in different ways depending on the knowledge
we have about it, for example a baby that never saw fire before may think it
is a kind of fun game to play with, but, after the first painful experience, the
baby will "interpret" differently fire and will associate a different "meaning'
to it. The fuzzy sets here represent how the brain interpreted the physical
quantities and they are interpreted in the form of "vague information".

4. The Fuzzy Inference Machine takes as input the fuzzy set A’ and I (A’) returns
the fuzzy sets C1, . . ., ;. This is similar to a human reasoning process, because
our brain "processed" the "vague information" it had and got to a conclusion,
that is still in the form of vague information.

5. The Defuzzification Interface Dy takes as input the fuzzy sets C1,...,C, and,
Dg(Ch,...,C,) = yo returns a real number. The human equivalent in this case
is performing an action in the real world that best represents the conclusion
it got to. The conclusion is "vague', but, in order to perform an action, an
actual physical value is needed. For example if a human touches a very hot

3See previous section for the definitions of Cartesian product and fuzzy implication

12



4 Fuzzy systems as universal approximators

object they will throw it immediately, and the "physical value" that is given
as "output' is the electrical impulse given to the arm, that in turns translates
to the speed of the arm getting away from the hot object.

4 Fuzzy systems as universal approximators

Notation 4.1 (Universal Approximators). We say that the elements of a class of
functions are universal approximators if they approximate with an arbitrary degree
of accuracy another class of functions, according to some metric.

In this section we expand some known results that prove that fuzzy systems are
universal approximators.

4.1 Wang Theorem

The following is a theorem due to [Wan92] and it makes use of the Stone- Weierstrass
Theorem.
Definition 4.2 (Algebra over a field). Let K be a field. An algebra over K or a
K-algebra is a structure (A, +, -, *) satisfying the following conditions:

1. (A, +,) is a ring

2. (A, +, %) is a vector space on K

3. The operations - : A x A — A and » : K x A — A are "compatible', i.e.

(axz)-(bxy) = (ab)x (x-y) Va,beK, Va,ye A

Remark 4.1. There are some generalizations of this definition, for example it’s pos-
sible to give the definition of an algebra over a ring.
Theorem 4.1 (Stone-Weierstrass). Let U < R™ be a compact set and Z < C(U).
If

1. Z is an algebra over R

2. 7 separates the points on U i.e.

VaoyeU:xz#y3feZ: f(z)# f(y)
3. Z wanishes at no point of U, i.e.
VeeU 3feZ: f(x)#0

then Z is dense in C'(U), with respect to the co-norm.
We define a set of MISO fuzzy systems X (U) on an input universe U < R"™ and
output universe R, X (U) is parametrized by some "design parameters'. For each
ie{l,...,n},
1. The number m; e N ‘
2. The fuzzy sets of the input universe {Al € F(U;) : 1 <i<mn, 1 <j < myl,
where U; = {yeR:3xeU A x; =y}
. The number of fuzzy output sets mg e N
Fuzzy sets of the output universe {B* € F(R) : 1 < k < mq}
5. The number of rules [ € N

= W

13



4 Fuzzy systems as universal approximators

6. For each k € {1,...,1}, a fuzzy rule of the form
R, =1IF x, is A{l’k and --- and x, is A»* THEN z is Bio+ (2)

where 1 < j; < m; for every i € {0,...,n}.

7. The fuzzy inference algorithm* I : F(U) x K — F(R)"

8. The defuzzification algorithm: D : F(R)™ x L — R
On the other hand, the fuzzification algorithm F' is fixed and it doesn’t depend on
the knowledge base, so we identify it with the fuzzification interface and it is the
point fuzzification.
We construct a subset Y (U) of X (U) for which we will prove the universal approx-
imation property, in particular we will prove that, if U is compact, Y (U) is dense
in C(U), the space of continuous real valued functions on a compact U < R™ with
respect to the co-norm.
Let U < R™ be a compact, Y (U) < X(U) is the function space consisting of all
fuzzy systems f € X such that

e The input fuzzy sets have membership functions that are Gaussian functions

of the form
j 1 (x—m7 2
pste) = aleap (3 (7 ®)

with 7 € R,0 < a] < 1,07 € (0,0)
o The output fuzzy sets have membership functions that are Gaussian functions

of the form
ppr(2) = agexp 5 Ug

with z¥ e R,0 < af < 1,08 € (0, 0)
o The fuzzy inference algorithm is the product inference
o The defuzzification algorithm is the centroid defuzzification [WM+92]
Lemma 4.2. Let U < R" be a compact, then Y (U) is the set consisting of all
functions f : U — R of the form:

l —i n
Zk:l ZI0k Hi:1 ik (3)
2op=1 Loz 1 gri ()

(4)

Moreover Y (U) < C(U).
Proof. From the previous definition of Y (U), an element f € Y(U) is of the form

fZDKOIKOFKIU—)R

where

4At this point we can define our knowledge base

K={Al:1<i<n, 1<j<mi}u{B*eFR):1<k<mo}U{Rp:1<k<I}

14



4 Fuzzy systems as universal approximators

e K={Al:1<i<n 1<j<m}u{B*e FR):1<k<my U{R,=
APF %o AP = Biok ik =1,...1}
o Fr:U— FU),Ig : F(U) - FR)!, Dg : F(R)! — R are, respectively, the
the point fuzzification, the product inference and the centroid defuzzification.
According to product inference algorithm,

VAe F(U),Ix(A) = (Ao Ry,..., Ao Ry)
where Vk =1,...,[,Vze R
#AoRk(z) = 2};13[#,4(90/)#& (xlvz)] =
= suplpa(@ ) o e (1) -+ 1 yin s (T ) 1o (2)]

z'eU

Let A, = Fk(x) be the fuzzy singleton of z, then Ix o Fx(z) = Ix(A,) = (A, ©
Ry,..., A, o R)) where VE=1,...,[,VzeR

Hasor, (2) = SUP|pa, (2) 0 gua (1) - 41 g () o ()] =
z'e n

— (O s (1) 1 g (T s (2) =
1 n
= a0 e (@) (2) =

= Hpiok (2) l_[ F yTik () .
i=1 "

In general, centroid defuzzification D : F(R)! — R takes as input a [-tuple
(C1,...,C)) of fuzzy sets of R and computes a weighted sum of the centroids °
of each C}.

In this case, centroid defuzzification means that the nonfuzzy output of the fuzzy
system for input x is a weighted sum of the centroids of A, o Ry, ..., A, o R; where
the weights are determined by the product inference as [[;_, p ik (2).5

In conclusion,

l
Zk:l Ck H?=1 H ik ()
1
Zk:I H?:l H ik (xz)

f(x) = DgolgoFr(z) = Dx(Ayo Ry, ..., A, 0 R) =

SFor a continuous membership function p : R — [0, 1], the centroid is
f zu(z)dz
JR

fR w(z)dz

51f we view the fuzzy inference machine and defuzzification interface as an integrated part, then
product inference can be explained as that the weight of rule Ry, to the contribution of determining
the output of fuzzy system for input z € U equals [ ], I i (z4)-

15



4 Fuzzy systems as universal approximators

where ¢, is the centroid of A, o R;. On the other hand, for each k =1,...,1[,

TL

,uAgcoRk( BJOk /'L Jzk xz
=1

2
Z_Z]()k:
_[JOkHN Jik xZ]exp —( gJO’“ ) >0
0

since 0 < al™* < 1,0 < [T, p e (@) < L.
Asaresult, Vk =1,...1,¢, = ok (see Proposition A.1) and
l —7 n
D=1 708 iz 1ty (2)
= l n : :
hIvy | gk (@)

The function f is well-defined and continuous on U because Vi = 1,...,n,Vk =
1,...,1, 1 i (x;) is a Gaussian function so, is non zero and continuous in the i-th
component of z. This means Y(U) < CU). O

Theorem 4.3 (Wang). Let U < R"™ be a compact universe of discourse, Y (U) is
dense in C(U) with respect to co-norm, that is

VgeCU)Ve>03fe Y(U):dx(f,g) = ilelglf(fﬂ) —g(r)] <e

Proof. Let us denote Y = Y (U), we want to prove that Y is not empty. For each 1 <
i < n we can choose m; € N and the parameters =7, 07, al for each j € {1,...,m;},
we define the input fuzzy sets with membership functions j,; : U; — R of the form

Equation 3; we can choose also my € N and ppr : R — R for each k € {1,...,mg} in
the same way. We can choose [ € N and [ rules of the form Equation 2, this way we
built the knowledge base

—{Al1<i<n 1<j<mu{B*eFV):1<k<mo}U{Rp:1<k<I}.

The fuzzification algorithm F', the fuzzy inference algorithm I, the defuzzification
algorithm D are fixed in Y. Since the fuzzification algorithm is independent on the
knowledge base we denote the fuzzification interface as F', with K we determine
the fuzzy inference machine Ix and the defuzzification function Dg. Finally f =
DK ¢} IK ¢} FK eyY.

For Lemma 4.2, Y is a set of real continuous functions, we want to show that Y
satisfies the conditions of the Theorem 4.1.

In order to prove that Y is an algebra on R, we just need to prove that is closed
under its operations: sum of real functions, product of real functions and the scalar
multiplication of a real function, because the other properties are inherited from the
algebra C'(U) in which Y is contained. Let fi, fo € Y, then they are of the form

Equation 4
22:1 ok [T, p Jzk(xz)

fl (IE) = 1 n 5
Py ) H ik (@)
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4 Fuzzy systems as universal approximators

l _
252:1 ytO,s H:'L:l [htins (231)
l )
252:1 :’L:l :ucfivs (xl)

foz) =

where A{ and C7 are the input fuzzy sets, [; and I are the number of fuzzy rules,
respectively of fi, fo. We have For notational simplicity set

Wie) = [ [ i (@), Vi) = [ [ugens ()
i=1 ’ i=1

7

Then
ll L 200k Wi(2)

k= 222:1 glos Vi(x)
hile) = ?:1 Wi ()

Zi2=1 Vs(x) ’

, folx) =

SO

l —3j l _

Lozok W (2 2 lto,s‘/t9 T

fl(df)—i-fQ(x) _ k_lll k( )+ 25_112?/ ( )

k=1 Wi (z) 23:1 Vi(z)

(kal:l gjo,ka) (2?:1 VS) + (222:1 7t0’s‘/;’) ( 21:1 Wk)
icl=1 Wi 2211 Vs

l1 l2 ll l2

2 Z (zjo,k WV, + gto,kuVS> Z Z (zjo,k + yt0,3> WV,
_ k=1s=1

_ k=1s=1

l1 12 ll l2

PRUAT PIPNLAZ

k=1s=1 k=1s=1
I o n
=3J —t
D2+ 70 [ L @t (22)
k=1s=1 i=1 " ‘

H p e (i) i s ()

For each i € {1,...,n} and for each pair (k,s) € {1,...,l1} x {1,...,ls}, we de-
fine a new rule whose antecedent Ezh “** has membership function by hiks (x;) =
1y (@) pttis (25) : Uy — R, for Proposition A.2, it is a function of the form Equa-

tion 3. For each pair (k,s), we can choose any output fuzzy set F'**) such that
Lk is a gaussian function of the form Equation 3 and its mean is whors, for
Proposition A.1, its centroid is w"0#s, therefore f; + fo € Y.
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4 Fuzzy systems as universal approximators

Similarly,

Zgzlzjo’kwk ) lez L gV (kalzl szka) (Zs 1 ytoSv)

fi(z) fax) = by, v W X2V

i o I 2
Z Z Ejo,kwkyto,sv Z Z ( Jo,k to s) WV,
_ k=1s=1 o

ll lg ll l2

2, 2, Wi, PIPIAL

k=1s=1 k=1s=1

1 2

Z Z <2j0,k ?t078> 1_[ H ik (xi)uc,ti’s (xl)
i=1 " i

k=1s=1

o L ol n
20 25 [ [ @pgpns (0)

k=1s=11i=1
1 o

3030 (74 ) [ T g 2
_ k=1s=1 =1
Zl 22 ﬁMEhz k,s 'rz

=1s=11i=

We introduce rules with the same antecedents Elh " as before and consequents
F®9) with gaussian membership and such that its centroid is whors = ok glos,
we conclude that fif, e Y.

Finally, for any a € R,

l —3j n l — n
n (@ZF) T, H i (@) ot (@R Ty H i (:)
afi(z) = =

Z i= 1/‘ J1k($z> Z i— 1# w(%) ’

so we can consider the same fuzzy system, but with consequents of the rules such
that their centroids are w/o+ = az’0*, shows af; € Y.

Now we prove that Y separates points on U Let 2°,94° € U be such that 20 # ¢°.
Then there exist i € {1,...,n} such that z¥ # y?. For each 1 < i < n, in the i-th
subspace of U, U;, we deﬁne two fuzzy sets Wlth membership functlons

Hay (i) = exp {_W]’ fraz(z;) = eXp[_(a:i—Qy?)?] ,

notice that if ¥ = ¢? then A} = A?. In the output universe R we define two fuzzy
sets with Gaussians memebership functions

(2 — 27

QWVﬁ&%

ppi(z) = exp [—
where 2!, 22 will be chosen below. Let the rules consist of
RiAlxox Al Bl Ry A A — B

18



4 Fuzzy systems as universal approximators

so that f € Y and has the form
2T Hal (1) + 2° [ [y Ha2 (k)
[ Loy par () + T Tisy paz ()

fz) =

Set

so that at 2° and y° one finds

2+ 22T gz (2
fz% = I;Ik_l MA’“(O 2 =az' + (1 -a)2?
L+ [ Ty paz (a)
AT o (49 + 22
f(yo) _ Hk—l luA]C (yk) _ 0422 4 (1 . a) Zl .

[Tiz Hal (vp) +1
Notice that

L 1
o) =y) Vie{l,...,n} = Hexp[—(:v%—y,g)z/Q] =1 = a=s,

so a # 1/2, that is a # 1 — a. Choosing z! = 0, 22 =1 gives
f@®)=1-a=a=f(y°),

so Y separates points on U.
Finally we need to prove that Y vanishes at no point in U. If we choose z/0+ >

0,Vk=1,...,1, then Vx e U,

o) 22:1 Zor [T, K ydik (:) 0
T) = 7 — t #0.
pIry I F y3ik (:)

Now we can apply the Theorem 4.1 on (Y,dy) and conclude that it is dense in
c(U). [

If U ¢ R™ is a compact, then C(U) € Ly(U) and we can generalize the above
theorem to Ly(U) = {g: U = R : §;|g(2)|*dx < o}.

Corollary 4.3.1. Let U < R™ be a compact, Y (U) is dense in Lo(U) with respect
to Ly-norm, i.e. Vg € Ly(U),Ve > 0,3f e Y(U) : (§, |f(z) — g(a)Pdx)? < ¢

Proof. Continuous functions on U form a dense subset of Ly(U) with respect to
Lo-norm, that is Vg € Ly(U),Ve > 0,3 ge C(U) : (§, |9(z) — g(z)2dz)z < 5.
On the other hand, if ge C(U), then 3f € Y(U) : sup,y | f(z) — ()

V= SU dx < oo because U is compact. Hence, we have

uf—gm<f—gz+-g—m2=(£;ﬂw wm) (f\g wm)2<

< ([ s - <mdﬂé+§<

zeU

1
€ |9 2 ¢
< d + - =
(L(QV%) x) 2
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4 Fuzzy systems as universal approximators

4.2 Additive Fuzzy System (AFS)

In this section we introduce the class of Additive Fuzzy Systems (AFS) ([TRK15],
[WM+92]), prove that they are universal approximators ([Kos94]) and show that
Wang’s theorem can be seen as a special case.

Definition 4.3 (Additive Centroidal Fuzzy System). An Additive Centroidal Fuzzy
System, or Additive fuzzy system for short, is a rule based fuzzy system f : U <
R™ — RP that maps inputs to outputs by summing fired then-parts sets and then
taking the centroid of the sum.

More precisely, an additive fuzzy system is a fuzzy system

fZDKO[KOFKIUanHRp

where
o« K =F(U x RP)* for some s € N
e K e K is aset of s fuzzy implication relations on U x RP, i.e.

K:{RZ:AZ — Biiizl,...,S}

where Vi = 1,...,s,A; € F(U), B; € F(RP)
o Fi:U — F(U) is a certain fuzzification interface
o I : F(U)— F(RP) is a fuzzy inference that we denote VA € F(U),

Iic(A) = in)BiA

that is, Yy € R?
g a)(y) = Z wi(A)MBZA ()
i=1

where Vi = 1,...,s, w;(A) > 0 is a scalar depending on A and B € F(RP)
is a fuzzy set depending on K and A, called i-th fired then-part set (or fired
then-part set of i-th rule R; or fired B; for short)”. We denote Yz € U

Higoric) = ), wil@)us:
i=1
the output of Iy o Fx for input .
e Dg : F(RP) — RP is the centroid defuzzification, i.e. B € F(RRP)

Dy(B) = W _ fR yuiiz(y)dy fR Yphs () dy

JRP 1 (y)dy JRP ps(y)dy o JRP s (y)dy

"Note that it is not required that the weights {w;(A4)}; = 1,...,s sum to unity. According
to the definitions given so far, in general I (A) isn’t a fuzzy set since p, (4 is [0, +00)—valued
and not [0,1]—valued. However we can consider a generalized membership function that is a
[0, +00)-valued function.
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4 Fuzzy systems as universal approximators

It is required an additional condition: Yz e U, Vi = 1,...,s, BY is a fuzzy set of R?
with integrable membership function and

f ppe(y)dy >0,
RP

for some 7 =1,...,s.

Remark 4.2. Note that the previous condition is required for the subsequent defuzzi-
fication interface. In fact, the condition ensures that YV € U, {4, fircor () (y)dy > 0
and it makes sense to consider the centroid of p, op,(2). Moreover, thls condition
can be achieved by requiring a combination of properties on the knowledge base K,
the fuzzification interface Fx and the inference I.

Putting the pieces together, we have f: U < R" — RP such that Vo € U

J sz x)yps: (y)dy
_ RP j— 1
pr Z wz MBI y

where Vi = 1,...,s, wi(z) > 0is a scalar depending on z, Bf € F(RP) is the B;
fired by x and §, ppz(y)dy > 0 for some j =1,....s

This additive structure produces a simple convex-sum structure: outputs are convex
combinations of the centroids of the fired then-part sets.

Lemma 4.4. Let f : U < R™ — R? be an additive fuzzy system.
IfVeeUVi=1...,s,

(=)

f 1B (y)dy >0
Rp

8 then
Ve eU,

x) = ipi(:r;)c x

where Vo e U, Vi =1,...,s,pi(x) > 0,3 pi(x) = 1?2 and ¢;(x) is the centroid of
B; fired by x, i.e.

«(y)d
(o) = S VB W)Y,
$aw 1152 (y)dy
Proof. Vx e U,
J S wi@us )dy Y wi(a) IRz
flz) = = _ izl B _

_ LPZW ) s (y)dy ) ;wi<x>JRp“Bf(y)dy

) ; [I:i(x) JRP MBZD(y)dy] v - ipi(a:)ci(x)
; wi() pr ppe (y)dy o

8This hypotesis is necessary to ensure that Vi = 1,...,s is well defined the centroid of u B?
equivalently, p; : U — [0,1]: >3}, pi =1
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4 Fuzzy systems as universal approximators

where Vi =1,...,s Ve e U

w@-<:c>f e (y)dy
pl(x) = s =
3o j )y

Obviously, Yz € U, Y, pi(x) = 1.
Moreover, Y € U, pi(x) > 0 because w;(x), {3, sz (y)dy > 0 by hypotheses. O

Notation 4.4. The class of all additive fuzzy systems from U < R"” to R? is denoted
by AFS(U,RP).

We now consider two particular classes of additive fuzzy systems.

The first one, denoted by AF'S,.q(U,RP), consists of all additive fuzzy systems
f e AFS(U,RP) such that:

VA e F(U), tryea) = sz Jai(A, K)pg

where Vi =1,...,s, a;(A, K) € [0,1].
The second one, denoted by AF'S,,;,(U,RP), consists of all additive fuzzy systems
f e AFS(U,RP) such that:

VA e F(U), frrgca) = sz Ymin(a;(A, K), ug,)

where Vi =1,...,s, a;(A, K) € [0,1].

In both cases, the scalars a;(A, K) € [0, 1] have the meaning of activation value of
i-th rule R; in A or i-th activation value in A.

Remark 4.3. Typically, the i-th activation value of A is determined as the inner
product between A and the antecedent A; of i-th rule, that is

a;(A, K) = Ao A; = \/MA A pa, ()
zeU

where v and A are, respectively, a t-conorm and t-norm.

Theorem 4.5 (Kosko). Let U < R"™ be a compact, then AF'Sp,,q(U,RP) and AFS,,in (U, RP)
are dense in C(U,RP) with respect to co-norm.

Remark 4.4. In the proof, we denote by | - | both the 2-norm in R” and 2-norm in

RP. It will be clear from the argument if it refers to R™ or R?

Proof. Let f € C(U,RP) then f is continuous on U compact, i.e. f is uniformly
continuous, that is

Ve > 0,30 > 0: Vo, 29 € Ut |xy — x| <0, |f(x1) — f(22)] <€

Since U is compact, it is possible to cover U with a finite family of open cubes, each
having center in U and diameter < 5 In fact, Vo € U, let consider the open cube
M, = (x1—p,z1+p) X - X (T, p,xn+p)W1thO<p< fthenwehave

« Uc Uer MJC
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4 Fuzzy systems as universal approximators

o Vx e U, diam(M, )—2p\/ﬁ<2\f4f
{M, : z € U} is an open cover of the compact U then a finite subcover of U exists,

ie. dzy,...,x,eU: My, = M;; U< |J;_, M; and Vi = 1,...,s, M, is an open cube
with center z; € U and diam(M;) < 3.
As a consequence,
e Vi=1,...,8,Vu,we M U, u—w| <diam(M;) < % < § and then | f(u) —
flw)] <e
e Vi k=1,...,s: M;n M, # J,Vue M;nUwe M, nU,|u—w| < and
then |f(u) — f(w)] <€
In particular,
e VxeUJi=1,...,s:x0eM;and Vi=1,...,s:xe M, |f(z) — f(z;)] <¢
e Vi k=1,...,8: Mjn My # O, |f(x;) — flz;)| <¢
Let consider a fuzzy system F' € AF'S,.,q(U,R?) with the following properties:
o the knowledge base is K = {R; = A;, = B; :i=1,...,s} where Vi =
voos 8, A€ F(U) @ pa(x) # 0 < x € M; and B; € F(RP) : up, has

centroid in f(z;), i.e.
J pa,(y)dy > 0
RP

and

f yup, (y)dy
Clup,) = “p———— = f(zy)
JR ) s, (y)dy

o Fr:U — F(U) is the point fuzzification
o [k is the following inference machine:

VAe F(U), pra ZuBA

where Vi = 1,...5, uga = a;(A, K)up, and a;(A, K) = sup,y pa(x)pa, ()
It follows that Vo' € U, let A, = Fg(2'), then Vi =1,...,s

ai(Ay, K) = pua, (')
and then

fre (A Z fge = D ha(
=1

Since Vo' e U,3i = 1,...,s: 2" € M;, it follows that 3¢ = 1,...,s: pa,(2’) > 0 and
then

j ia ()i, (9)dy > 0
Rp
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4 Fuzzy systems as universal approximators

By applying the centroid defuzzification Dg we obtain that

where Vi =1,...,s

i () f s, (y)dy

ium(»@') [ nmway

0 < ¢(x) <1

and they sum to unity, that is F'(z') is a convex combination of the centroids f(x;).
On the other hand, g, (z') # 0 < a’ € M; then F(2') is a convex combination
of the centroids {C(up,) = f(x;) : 2’ € M;} i.e.
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4 Fuzzy systems as universal approximators

with 0 < ¢;(2') and 37, cpy, ci(2') = 1. In conclusion, V' € U

[Fa) = fa) =] 3} a(@)f(e) = f2)] =

/)
[
I
&
o
N

This conclude the proof for AF'S,,,q(U, RP).
For AFS,,i, (U, RY), the proof is the same with the difference that the membership
function pp, is required to be symmetric and centered on f(x;) and

VAe ‘F(U)a HIg(A) = ZMBZA
i=1

where Vi = 1,...5, uga = min(a;(A, K), up,) and a;(A, K) = sup,ey pa()pa, (x)
It follows that V2’ € U, let Ay = Fg(2), then Vi =1,... s

(A K) = pia,(a)
and then
Hig(A) = ZMB;T”' = Zmin(ﬂAi (.T/), II’LBz)
=1 =1

Since Vo' e U,3i = 1,...,s: 2" € M;, it follows that 3¢ = 1,...,s: pa,(2’) > 0 and
then

min(yea, (2'), ps,)(y)dy > 0.
RP

From the hypothesis of symmetry of pup, it follows that if pi4,(2’) > 0 then pg» =
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4 Fuzzy systems as universal approximators

min(pea, (2'), up,) has the same centroid of pp, i.e. C(pg.r) = f(x;). Then, Vo' € U

f ZUMBI
RP

where Vi =1,...,5s

0 g Cl(.T,) = — RP 2 < 1
S| sy )y
i—1JRP

and they sum to unity, that is F'(z’) is a convex combination of the centroids f(x;).
However, pia,(2') # 0 <= 2’ € M; and if pa,(2") = 0 then

le!) = |y = [ minua (@), ) () = 0

RP

It follows that F'(z') is a convex combination of the centroids {f(z;) : ' € M;} i.e.

F(2) = Z ci(@') f (i)
o

with 0 < ¢;(2') and 337, L), ci(2') = 1. Tt is possible to conclude as in Equation 5.
[

Remark 4.5. We can observe that in the case of AF'S,,,q(U,RP), we can construct a
fuzzy system F' that approximate the function f also by choosing the membership
functions 4, such that

€
<

KA, (l’) = my SRP B, (y)dy

x ¢ M;
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4 Fuzzy systems as universal approximators

where m; = max,ey |f(x) — f(z;)],'° which exists because f is continuous in U
compact, and 0 < 7; < 1. In this case, still holds that x € M; = pa,(z) >~ >0

and still holds that Vo' e U

with

KA, (l’/) f 22:3 (y)dy s
RP <

M) [ pmwty
i=1 RP

0< C; (%l)

but we can’t conclude as in Equation 5. However, V2’ € U we have that

andVi=1,...,s:2" ¢ Mi

ONote that if m; = 0 for some i = 1,...,s, f is constant in U and for any choice of y4, we have

F=J
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4 Fuzzy systems as universal approximators

We can conclude, V' € U

[F(2') — f(2)] = Z ci(a) f(z;) — f(2")

N
£
&
=
8
N
|
=
&\
_|_
£
&
=
—
3
|
=
&\
N

N
O
=
=
5
|
=
&\
+
O
=
=
5
|
=
&\
N

1<i<s, 1<i<s,
x'eM; x'¢M;
3
< Z ci(2')e + Z 5 |f(@:) = f(&)] <
R LD Sl WL
i=1
€
< 2 CZ‘<ZL’/)5+ Z S m; <
i S i )i pr s (y)dy
i=1
1
<52 cl-(:c’)—kez - <
— et Z”YJ 1, (y)dy
i=1
5 1
<e+ 52 5 =
i_lZ’nJ s, (y)dy
=1 Rp

=1

=ef

where 6 > 0 is constant in 2’ € U.

Moreover, we can use this proof to demonstrate and generalize the previous Wang’s
theorem without using the Stone-Weierstrass theorem: let U < R™ be a compact,
Wang’s theorem proves the density in C'(U, R) for a class of fuzzy systems that form a
subclass of AFS,.0q4(U,R). In fact, a fuzzy systems f € Y (U), in the class considered
by Wang’s theorem, has as knowledge base a finite set of fuzzy implications of U x R
such that both membership functions of antecendets and membership functions of
consequents are Gaussian functions, i.e

KZ{RZ:Al - Biiizl,...,S}
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4 Fuzzy systems as universal approximators

such that Vi =1,...,s

1 (z—v\°
Vo e Ra /’LBz(x) = 5161']? <_2 (x P)/V> )

with 0 < a4, 8; < 1, v;,0; € (0,40), v; e R;T; € R Vi = 1,...,s. Then the output
of fuzzification and inference is Vo € U

UIgoFk(z) = Z w4, (T)
=1

w; = <JR 1B, (y)dy) R

Finally the output of centroid defuzzification is

where Vi =1,...,s

Doy Vikta, ()
it ()

In other words, is the subclass of AF'S,,,q(U,R) where membership functions are
Gaussian membership functions, the fuzzification interface is the point fuzzification

—1
and in the inference VA € F(U), w;(A) = (J B, (y)dy) and a;(A, K) = AocA; =
R

SUPgeyr KA (‘T)MAz ({L‘)

We can also consider multivariate Gaussian membership functions for the con-
sequents B; of the rules and obtain a generalization of the class Y (U), namely
Y (U,RP) € AFS)0q(U, RP) with Gaussian membership functions both for antecen-

dents and consenquets of the rules, point fuzzification, and inference such that VA €
-1

FO) wld) = ([ antidy)  and @A, K) = Ao = supa naliels (o).

We can prove that if U < R” is compact, Y (U, RP) is dense in C'(U, RP) with respect
to co-norm, by adapting the proof of Kosko’s theorem as follows:
o Construct the finite cover of open cubes of U as in the proof of Kosko’s theorem
e Vi =1,...,s choose up, as a Gaussian function centered in f(x;) € RP and

€
pa, as Gaussian function such that Ya ¢ M;, ua,(x) < — where
m,

my = maxpey |f(x) — fla)] 1 l

o Observe that since Vi = 1,...,s pa, is a Gaussian function, it has non zero
minimum v; > 0 in the compact U

1Tt is always possible to consider a Gaussian function that remains below a certain bound outside
a bounded set
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4 Fuzzy systems as universal approximators

o Conclude *? that Vx e U

F(x) _ Zf:l O(NBZ)MAZ ({L‘) _ Zf:l f(xZ>MAz (ZE)
Zf=1 Hea; (ZL’) Z?:l ,qu(l’)

and then

|[Fz) = f(2)] = | = <

i pa; () [f (i) = f(2)] 2 pa, (@) [f(z:) = f(2)]
< xzezl\h i N a:\¢]\7[1’ S g
ZH’Ai ($) Z”Ai (x)

N

= 1+ZS: sl el

i=1

with 8 > 0 is a constant.

4.3 Fuzzy relation based system

Besides those analyzed so far, other types of fuzzy systems have been shown to be
universal approximators. In the context of real-valued functions of a real variable,
an important result is due to Castro and Delgrado [CD96].
We define two sets of SISO fuzzy systems on an input universe U < R and output
universe R that differ in the choice of the fuzzification algorithm.
In particular, given
e a class REL of fuzzy relations on R x R such that for each finite family of
squares Z = {I, = (x, — &,z + ) x (yn — &, yn +€) : (v, yn) € R2 b =
1,...,n, § > 0,e > 0}, for some n € N, there is a fuzzy relation R € REL
such that pgr(z,y) # 0 <= 3Jh e {1,...,n} : (x,y) € I or, equivalently,

{(z,y) e R?: pg(x,y) # 0} = Up_y In

12The Proposition A.1 can be generalize to multivariate Gaussian function, the centroid of yup,
is its center f(z;)
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4 Fuzzy systems as universal approximators

e A t-norm A : [0, 1] x [0,1] — [0, 1]
o A t-conorm v : [0, 1] x [0, 1] — [0, 1] which it makes sense to consider \/ _y
where X < [0, 1] is infinite's.
 a defuzzification algorithm D : F(R) x K — R verifying the property of
producing a point in the support of the original fuzzy set, that is VB € F(R) :
UB ?é O,MB(D(B,K)) #0
we denote by Fjuin: the set of all fuzzy systems of the form:

f=DgolxoFx:U—R

where
e K =ReK = RFEL is a fuzzy relation on R x R
o Fr:U — F(U) such that Vg € U, fipy () (2) # 0 = =120
o I : F(U) — F(R) is the compositional rule of inference, i.e.

VAe F(U),Ix(A) = Ao R

ie. Vye R
paor(y) = \/ A(ua(@), pur(z,y))

zeU

The design parameters of a fuzzy system f € Fju;,,: are the Knowledge base K = R €
REL and the particular fuzzification interface (i.e. the choice of ,UFK(:CO)(%) Vo €
U).

We denote by Fippro. the set of fuzzy systems having the same form as the previous
ones, with the difference that F : U — F(U) is the approximate fuzzification, that
is, given 6 > 0,Vzo e U

PFg o) (@) #0 <= xeU: |z —xo| <6

or, equivalently
Va e U7 /“LFK(xo)(I) = /“L[x(b 5] (Z‘)

where p[zg, ] : R — [0,1] is a function such that u[zo,d](z) #0 < |z —x¢| <.
The design parameters of a fuzzy system f € Fypp0. are the Knowledge base
K = R e REL, 6 > 0 and p[x,0] Vx € U (i.e. the particular fuzzification in-
terface).

If U = R is a compact, then Fpu,: and Fppm0. are dense in C(U) with respect to
the oco-norm.

We first prove the following

Lemma 4.6. Let U < R be a compact, then

Vge C(U),Ve > 0,3f € Fupproa : Vo € U, Yy € R, pup, (y)lg(x0) — y| < epp,, (v)

13An example of t-conorm with this property is the standard union t-conorm, i.e. maximum
t-conorm: if X < [0, 1], even infinite, 0 < \/,cx ¢ = supgex = < 1
HSimilar to point fuzzification but it is also possibile that s Fre(z0) (T0) # 1
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4 Fuzzy systems as universal approximators

where By, is the fuzzy output of f (i.e. Ix o Fx(xo)) for the input xo. Moreover,
the membership function pp, is not identically zero.
Similarly,

vg € C(U)7V€ > 07 Elf € Fpoint : v‘1.0 € U7 vy € Ra ,uBzO (y)|g($0) - y’ < EMBIO (y)

where By, is the fuzzy output of f (i.e. Ik o Fi(xg)) for the input xq.Moreover, the
membership function up, is not identically zero.

Proof. Let g€ C'(U) and € > 0: g is continuous on a compact U, then g is uniformly
continuous on U, i.e. 30 > 0: Yoy, 20 € U : |21 — 22| < 6, |g(z1) — g(x2)] < &.

For each x € U let consider (x — 6,z + ), it is obvious that U < |, ;(x — 6,z + 9).
Since U is a compact and {(z — 0, + J)},cr is an open cover of U, it exists a finite
family of points xy,...,zs € U such that U < | J;_,(z; — ¢, 2, + §). From the choice
of 0, it follows that VI =1,...,s,Yex e U n (x; — d, 2+ 0), |g(z) — g(z;)| < €.

Let consider the finite family of squares

IT={L=(x—-0x;+0)x(y—c,yy+e):l=1,...,s}

where VI =1,...s,y, = g(x;).
From the hypothesis on REL, it follows that

dRe REL : pg(z,y) #0 < 3 =1,...,s: (z,y) € [,

or, equivalently, {(z.) € B : jun(,y) # 0} = Uy, L.
Let consider a f € Fippror corresponding to the choice of R € REL and such that
Voo e U, Fx(xg) = Ay Vo eU

1 |lz—x9l <0
u%(x):{ = = ol

0 |z—x0| =0
Then Vxg € U the fuzzy output of f for the input z¢ is B,, = A,, o R, i.e

¥y € R, pp,, (v) = \/ Apa, (@), pr(@, y))

zeU

/B, is not identically zero because Yy € R '°

1B, (Y) = Apa,, (o), pr(To,y)) =
= /\(1,,U,R<5(10,y)) =
= pr(20,y)

Let I =1,...,8 : 29 € (x; — 0, + 0), then Yy € (y, — &,y + €), (w0, y) € I, and

18, (y) = pr(z0,y) > 0
Let y € R, we distinguish two cases:

s p, (y) >0

Yz, y € [0,1], v(z,y) = 2,y
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4 Fuzzy systems as universal approximators

In this case, 0 < \/, oy A(pa,, (), pr(z,y)) then ' 32" € U = A(pa,, (2'), ur(a',y)) >
0. From the properties of a t-norm '7, it follows that p, (2') > 0 and pgr(z’,y) > 0.
In particular,
© pa, (@) >0 = |2' — x| <6 = |g(xo) —g(a)] <&
o pup(ey) >0 = A =1,...,s:(2,y) e I}, ie. |2/ — x| <dand |y, —y| <
e = |g(a) —g(wm)| < e and |g(z) -yl <e.
Then,

l9(zo) — y| < |g(wo) — g(2")| + |g(z") — g(z0)| + [g(z1) — Y] < 3e

Multiplying both sides by ug, (),
118, (Y)9(x0) — yl < 3eps,, (y)-

© 1B, (y) =0
In this caose, obviously ug, (y)|g(0) — y| < 3epp,,(y) since both sides are zero.
Similarly, let consider a h € F,;;,; corresponding to the choice of R € REL and of
point fuzzification as fuzzification interface. Then Vxy € U the fuzzy output of A for
the input xy is B,, = A,, 0 R , i.e.

1., (W) = \/ Ata,, (@), na(z, y))

zelU

where A, is the fuzzy singleton associated to z.
B, is not identically zero because Vy € R

1., (W) = \/ Apta,, (), pr(e,y)) =

= A(pa,, (20), r(T0,Y)) =
= AL, pr(zo,y)) =
= 1r(Z0,Y)

Let I =1,...,8 : 29 € (x; — 0, + 0), then Yy € (y, — &,y + €), (xo,y) € I; and
118, (Y) = pir(20,y) > 0
Let y € R, we distinguish two cases:

* g, (y) >0
In this case,

0< \/ Apa,, (7), pur(2,y) = 2" € U Apa,, (2'), ur(2',y)) >0 =
zelU

= pia,, (¢') > 0, pr(z’,y) > 0

o pa,, (7)) >0 = 2’ =1z
o pur(ey) >0 = I =1,...;s: (2 y) e L ie |2/ —x| <dand |y —y| <
e = lg(wo) —g(x)| < e and [g(x) —y| <e.

16

v is a t-conorm: Vz € U, /\(‘[LAm (@), pr(x",y) =0 = V, v /\(“Amo (z), pr(z,y)) =0
17

z=00ry=0 = A(x,y)=0
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4 Fuzzy systems as universal approximators

Then,
l9(x0) =yl < |g(wo) — glar)| + |g(z1) —y| < 2
Multiplying both sides by s, (),
1B, (W)|g(x0) — yl < 2eps,, (y)-

e g, (y) =0
In this case, obviously up, (v)|g(zo) —y| < 2eus,, (y) O

Now we can conclude the following
Theorem 4.7 (Castro-Delgado). Let U < R be a compact, Fuppron and Foome are
dense in C(U) with respect to co-norm.

Proof. We want to prove that

Vge C(U),Ye > 0,3f € Fupprows h € Fpoint 1 sup | f — gl,sup|h — g| < e
U U

From the previous lemma, we know that
Vg € C(U>7 Ve > 07 Elf € Fappro:]c : VSL’Q € U7 vy € R, KBy, (y)\g(xg) - y| < gl’LBZO (y)

where By, is the fuzzy output of f for the input ¢ and pp, # 0. Then Vg € U,
let consider y = f(xg) = Dk (By,). From the hypothesis on the defuzzification, it
follows that up, (f(zo)) > 0. From

ps,, (f (20))]g(x0) = (o) < e, (f(20))
dividing by g, (f(0)), we obtain
9(z0) — flzo)| <€

and, then, sup, |f —g| <e.
Similarly, we know that

Vge C(U),Ye > 0,3h € Fyoint : Voo € U, Vy € R, up, (y)|g(w0) — y| < eps,, (y)
where By, is the fuzzy output of & for the input zo and pp, # 0. Then Vg € U, let

consider y = h(zg) = Dk(B,,). Again from the hypotesis on the defuzzification,it
follows that pp, (h(zg)) > 0. From

(18, (h(x0))|g(x0) — h(xo)| < eps,, (h(xo))

dividing by pg,, (h(ro)), we obtain

19(x0) = h(zo)| < &

and, then, supy |h — g|] < e.
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5 Neuro-Fuzzy systems

5 Neuro-Fuzzy systems

5.1 Adaptive networks

An adaptive network is a parametrized function f : R™ x R" — R™ that can be
represented as a directed graph G = (V, E) such that for each node i € V' we have
a function associated to that node f; : RPi x R" — R%, where p; is the dimension
of the input of f;, ¢; is the dimension of the output of f; and r; is the number
of parameters taken by the function f;. The graph is connected and there are n
nodes that have no incoming edges, those are called input nodes and are assigned
as an argument z of f along with its parameters P to calculate f(x, P). Similarly
there are m nodes that have no outcoming nodes, those are called output nodes and
contain the result f(z, P). Each directed edge from node i to node j denotes that
the output of the node i is passed as argument to the node j. The nodes that don’t
have parameters are represented with a circle while the ones that have them are
said "adaptive nodes" and are represented with squares. An adaptive network can
be changed by varying the parameters of the functions of its nodes. An example of
adaptive network is given in Figure 2, it’s also possible to specify the parameters of
an adaptive node as shown in Figure 3, in this case the functions that previously
were adaptive are now fixed and the parameters nodes are seen as adaptive nodes
that simply return the parameters themselves. So in general a "parameter node" is
a node with the identity function idg-, where s is the number of parameters.

Input layer 1st hidden layer 2nd hidden layer  Output layer

Figure 2: A feedforward adaptive network

Input layer 1st hidden layer 2nd hidden layer  Output layer

Figure 3: A feedforward adaptive network with explicit parameters
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5 Neuro-Fuzzy systems

We classify the adaptive networks in feedforward adaptive networks if their graph
is acyclic and recurrent adaptive networks otherwise. Figure 2 is an example of
feedforward adaptive network and Figure 4 is an example of recurrent adaptive
network.

Input layer 1st hidden layer 2nd hidden layer  Output layer

Figure 4: A recurrent adaptive network

In Figure 2, we sorted the adaptive network graph into "layers" such that the outputs
of a layer are the inputs of the next layer,'® this is the most common graphical
representation called layered representation, but also others exist, like the topological
representation.

An adaptive network f :R"™ x R" — R™ can assume the form of different functions
fp: R" - R™, where P € R", depending on the vector of parameters P. Given a
finite set of inputs X < R™ and a set of desired outputs ¥ < R™ with the same
number of elements of X, the process of tuning an adaptive network’s parameters to
get a set of parameters P* such that the error measure e( fp«(X),Y) is minimized, or
below a certain threshold, is called learning and it is carried out with some learning
algorithms or learning rules. We will give a description of a widely known learning
algorithm for feedforward adaptive networks: the steepest descent method.

5.2 Steepest Descent Method

Let f: R" x R" — R™ be an adaptive network such that its node functions are
differentiable and P = <a1,1, e ALN(1) - AL - ,aL,N(L)> € R" is the vector of
parameters. We represent f in layered form with L + 2 layers, where the 0-th layer is
the input layer and the (L+1)-th layer is the output layer, each layer [ € {0, ..., L+1}
has N(I) nodes, we require that N(L) = N(L +1). Let X; = (201,...,%o,n(0)) €
RN be the vector of inputs and Y] = (yi, ... JYN(L)) € RN) the vector of desired
outputs, let x;; € R, fi;, a;; be respectively the output, the function and the vector
of parameters of the node i € {1,..., N(l)} in the layer | € {0, ..., L}, notice that
the output layer L + 1 doesn’t have an output. Then the expression of any output
is

L4l = fl+1,i<xl7a/l+1,i) Vie {O’ e '7L - 1}77' € {17 S 7N(l)} )

8Note that this is not a restriction on the resulting function because you can always add a
"chain of identity functions" that pass the output of a non-consecutive layer to desired layer (even
"much further" in the layer order).
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5 Neuro-Fuzzy systems

where ; = (211, ..., 2;,n@)). We define the error of the function fp on the input X;
as
N(L)
By =e(zr) = Z (yi — 214)?
i=1

this definition is not unique and it might change depending on the context or specific
needs. We now define the error signal respect to the node i € {1,..., N(I)} in the
layer [ € {0,...,L} as

oe
then 5
e
P = =2 i —Yi) -
i = o (s) = Aens— )

Now notice that
N(L)

2
e(zr) = Z (i — fri(zr-1,az))”,
i=1
so the error depends not only on the last layer but also on the preceding, this
reasoning can be extended to all the layers up to the input layer. So
de ofr ofL

(w2) = Velow): 0Tr—14 (or-) =er- 0Tr—1;

EL-14 =
' 5$L—1,z‘

in the same way we have Vi€ {0,...,L —1},ie {1,...,N(])}

Oe oe 0fii1
(z1) Ty

El,i

= x frd 6 .
y (r)ml,i ( l) +1 a y

0%141 8371,i

Now we can calculate the derivative of the error respect to a parameter a;y;;, of
course the only part of the network that depends on that parameter is the node 7 in
the layer [ + 1, so 251, will depend on it as well. We have, V1 e {0,...,L —1},i €

{1,...,N()}
oe de Ofim1 e O fi+14

X)) = xXr) - xIy) = Ty,
aal+1,i 0141 (3Gl+1,z’ alerl,i aalJrl,i

(wl) = El4+14

we denote it also as

8E1 oe

aal+1,i aCll+1,i

(zr).

So far we considered just one input vector X; and one desired output vector Y;, but
in order to train an adaptive network we need a dataset with multiple input-output
couples. So if we have N € N input-output couples (X;,Y;), we define the total error

as
N
E = ZEsa
s=1

where F, is the error on the s-th input-output couple as defined for E;. Therefore
the derivative of the total error respect to the parameter a;; is

oE & 0E,
2

8@172- 6@111» .

s=1
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5 Neuro-Fuzzy systems

Finally we define the variation of the parameter a;; as

oF
8(11,2- ’

where 7 € R : n > 0 is chosen, it’s called learning rate and it’s said to be an
hyperparameter of the learning algorithm.

We just gave a description of a step of the Steepest Descent Method, in fact at the
step k£ € N we find the parameter variation Aal(ﬁ and update

Aal,i =N

al(ﬁﬂ) = al(f;) + Aal(,k;) )

So if P*) = <a§’f1), o ,aglf])v(l), o ,ag’f)l, o ,agf)N(LO is the vector of parameters at
the k-th iteration, we stop the algorithm when k goes over a max number K of
iterations or the total error the k-th iteration E® is below a threshold 6. § and K
are hyperparameters of this learning algorithm.

Adaptive networks include some more specific function classes, for example neural
networks, we will focus on a specific class of adaptive networks that are connected
with fuzzy systems: ANFIS.

5.3 ANFIS

ANFIS, that stands for Adaptive Network-based Fuzzy Inference System or Adap-
tive Neuro-Fuzzy Inference System, is an adaptive network that is a fuzzy system
according to Definition 3.5.

We define a fuzzy system that is usually represented as an ANFIS network, we
introduce the necessary notation first.

Notation 5.1. Let Uy,...,U,,V be universes of discourse, and let A;,..., A, be
fuzzy sets respectively on Uy,...,U, and let f:U; x --- x U, — V. The notation

IF 27 is Ay and --- and z, is A, THEN z = f(xy,...,2,), (6)
stands for an implication of the form
IF 7 is A; and --- and z,, is A,, THEN z is B,

where B is the fuzzy set given by the point fuzzification of f(z1,...,x,).
Definition 5.2 (Takagi-Sugeno-Kang fuzzy systems). Let U; < R,...,U, € R
universes of discourse, let U = Uy x --- x U,, let Ay, ..., A1,,..., An1, ..., Ay, be
fuzzy sets respectively on Uy, ..., U,, let a; € R™ and b; € R for all j € {1,...,r},
let K ={A;:1<i<n1<j<r}u{a;,bj:1<j<r}bethe knowledge base.
Let the fuzzification interface Fyy : U — F(U) be the point fuzzification on U, let
F :R — F(R) be the point fuzzification in R. Let Ry ; : Fy(U) — F(U x R) be
the j-th fuzzy rule generator, with j € {1,...,r}, such that

where the implication is given by the product inference rule. Let I : F(U) — F(R)"
the inference machine, such that

Iic(A) = (Ao Ri1(A), ..., Ao Ry, (A)).
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5 Neuro-Fuzzy systems

Let D : F(R) — R be the max defuzzification, let Dg : F(R)" — R be the

defuzzification interface such that
21 ker (D(CF))D(CY)
21 ter (D(CY))

Let f = DgolgoFk be the Takagi-Sugeno-Kang fuzzy system or TSK fuzzy system.
The TSK fuzzy system is described as a fuzzy system as per Definition 3.5, but in
literature it’s written in a simpler form. We prove it in the following.
Proposition 5.1. Let f : U — R be a TSK fuzzy system with the notations in
Definition 5.2. Then, for each x € U

DK(CivaC;‘) =

D1 Wiz

o) = S22

where for each j € {1,...,r}
wj = /\ KA (xl)
1<i<n
and zj = x - a; + b;.
Remark 5.1. The t-norm A, needs to be specified, usually it is the minimum operator.

Proof. Let x € U, let A = Fy(x) be the fuzzy set resulting of the point fuzzification
of z. Let je{1,...,7}, let

Cj = F(Fy'(A) a; + b)) = Fz - a; +b),

that is the point fuzzification of x - a; + b;, this also implies that a TSK uses rules
of the form Equation 6. Whatever are the chosen norm A and conorm v, let

oy (1, 2) = oy xan, () ey (2) = /N g (i) - iy (2)

1<i<n
in particular,
KR, (.I', Z) = /\ IU’AZJ<:CZ) g len (Z) = Wjlcy (Z) )
1<i<n

then

Hackie;()(2) = \ Alpalu), (1, 2)) = Apa(e), pr,(,2)) = pr, (2, 2) = w; pe, (2).
uelU

So

w; if 2 =z

1\Z) = o j <) =
pey (2) = 0 (2) {0 it:

and if w; # 0 the max defuzzification D(C}) = z; is well defined, otherwise we don’t
calculate it because in the final sum it doesn’t appear. Finally
sy - Dot DEIDE) T )y Ty
Zj:l He, (D(C))) Zj:l Her (25) Zj:l wj
The only remaining problem is if all the w; = 0, this is generally not specified in
the TSK fuzzy system, but it can be solved assuming, for example, that, for each
1<i<n, Aj,..., A, have supports that cover the entire Us. O
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6 Conclusion

We can represent a TSK fuzzy system as an ANFIS network as in Figure 5. Where

w.
N‘(’U}l,...,wr):Tij:@' VjE{l,...,T'}
! Zj:le ’
and
Zj(@1, . 20, W5) = W5 (2 - a; + by),

that has a; and b; as parameters.

Input layer 1st hidden layer 2nd hidden layer 3rd hidden layer 4th hidden layer 5th hidden layer = Output layer

Figure 5: A TSK fuzzy system with 2 inputs and 3 rules represented as an ANFIS
network

It’s possible to train an ANFIS network as we did in subsection 5.2, but there are
other learning algorithms that are more performant.

6 Conclusion

Our work aims to give a rigorous introduction to the fuzzy sets and fuzzy logic
theories and to provide an overview of ANFIS networks, we proposed a definition

of fuzzy system in Definition 3.5 and expanded known results as in Theorem 4.3,
Theorem 4.5 and Theorem 4.7.
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A Appendix 1

A.1 Gaussian functions

Proposition A.1. Let ¢ : R — R be a Gaussian function, i.e

6(2) = aexp (_; (z;M>2)

with ov,0 € R — {0} and p € R, then

f 2 6(2) d

. iqb(z) dz

Proof. Recall that Vo, ue R0 € R — {0},

L‘W <_; (2 “)2) d> — aov/2r.

It follows that

> 2 ptp 12— p\?
JRng(z)dz= —0 JRUQaexp <2< . ) ) dz =
— 1 _ 2 1 _ 2
:—UQJ _z 'uaeacp —= (Z ,u) dz+c72f ﬂaemp —= (Z M) dz =
g 02 2 o R 02 2 o
d 1 N 1 — N2
- —aszdzaexp (—2 (Z U”) ) dz+02:2JRaexp (—2 (Z U”) > dz =

2 Liz=m\A\ ™ n
= —0° |aexp 5 < ) +o g&a\/ 21 = paovV 22w
—00

and if a, 0 # 0

fRng(z)dz ) jao/ 2 .
(2) dz oo/ 2T

R
[l

Proposition A.2. Let ¢q, ¢ be two Gaussian functions, then ¢1¢s is also a Gaus-
sian function.

Proof. Let




A Appendix 1

with ay, ag, 01,09 € R — {0} and puq, 2 € R, then

1 — 2 1 _ 2
ot omen (352 ) (4(552))-
_ ) ,
< 1 (Z‘—M1> (x—m) ]) B
-5 + =
2 01 P
() (=)
21 o? o2
il S o2 o (M B2 MoK |
( 2-36 (‘7%+‘7%> x(U%JFU% " o? 03

= (X1 2€XTP

= (X1(2€TP

by setting =& =

P1¢2(z) = cqagexp

= (X1 2€xP

2 2 2
(2 () e (d1)]) -
oy o5 o7 lop

/I\/_\ +
N = N
q[\')‘H
| —

Hl\’)
|
)
S
ql\?

N
Q‘t
=N =

+
Q‘t

NN N

~~
+

7 N
(Y]

N
Q‘t
[l Y

+
Q‘t

NN N
N~
N~~~

|

11 o (m e\ o (m | m\\' ., (1
= 1 0exp _20_2[(1'_0' (0_%"‘0_% — |0 ;%+;% + 0o ;%+;§

= X1 2€expP

_ 2
P12(x) = Barasexp (—; (x ”) ) :

g

A.2 Fuzzy Logic

Definition A.1 (Fuzzy system). Let U < R" be the input universe and V< R™
the output universe. Let ri,r9, 73,74 € Ny, let

K=R"x FU)? x F(V)? x FUxV)+,
and let
Kr=R" x FU)™?, Ki=R"xFUxV)"*, Kp=R"xFV)=

IT



A Appendix 1

Let F: U x Kp — F(U) be the fuzzification algorithm, I : F(U) x K — F(V)?
be the fuzzy inference algorithm and D : F(V)? x Kp — V be the defuzzification
algorithm. Moreover

I(A,K) = (Ao Ri(A,K),..., Ao Ry(A,K)) YAeF{U)VK eK;,

where R : F(U) x K — F(U x V)% is the fuzzy rules generation algorithm, for each
ie{l,....,q} Ry : F(U)xK; — F(U x V) is the i-th fuzzy rule generation algorithm
and o is a synthetic operation. Let Ryx = R(-, K) be the fuzzy rules generator and
let Ri; = Ri(-, K) be the i-th fuzzy rule generator.

Let K € K be the Knowledge Base, let Kp, K;, Kp the components of K such that
they belong respectively to Kp, K7, Kp. Let Fx = F(-, Kp) be the fuzzification
interface, or fuzzification, let I = I(-, K1) be the fuzzy inference machine, or fuzzy
inference, and let Dg = D(-, Kp) be the defuzzification interface, or defuzzification.
Let f = DgolgxoFyk : U — V, then we say that f is a fuzzy system with Knowledge
Base K or simply a fuzzy system.

If m =1 we call fa MISO (Multiple Inputs Single Output) fuzzy system.

If n,m =1 we call fa SISO (Single Input Single Output) fuzzy system.
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